Sciact
  • EN
  • RU

Shape-Preservation Conditions for Cubic Spline Interpolation Научная публикация

Журнал Siberian Advances in Mathematics
ISSN: 1055-1344 , E-ISSN: 1934-8126
Вых. Данные Год: 2019, Том: 29, Номер: 4, Страницы: 231-262 Страниц : 32 DOI: 10.3103/s1055134419040011
Ключевые слова cubic spline, shape-preserving interpolation, monotonicity, convexity
Авторы Bogdanov V.V. 1,2 , Volkov Yu.S. 1,2
Организации
1 Sobolev Institute of Mathematics, Novosibirsk, 630090 Russia
2 Novosibirsk State University, Novosibirsk, 630090 Russia

Реферат: We consider the problem on shape-preserving interpolation by classical cubic splines. Namely, we consider conditions guaranteeing that, for a positive function (or a function whose k-th derivative is positive), the cubic spline (respectively, its kth derivative) is positive. We present a survey of known results, completely describe the cases in which boundary conditions are formulated in terms of the first derivative, and obtain similar results for the second derivative. We discuss in detail mathematical methods for obtaining sufficient conditions for shape-preserving interpolation. We also develop such methods, which allows us to obtain general conditions for a spline and its derivative to be positive. We prove that, for a strictly positive function (or a function whose derivative is positive), it is possible to find an interpolant of the same sign as the initial function (respectively, its derivative) by thickening the mesh.
Библиографическая ссылка: Bogdanov V.V. , Volkov Y.S.
Shape-Preservation Conditions for Cubic Spline Interpolation
Siberian Advances in Mathematics. 2019. V.29. N4. P.231-262. DOI: 10.3103/s1055134419040011 Scopus РИНЦ OpenAlex
Оригинальная: Богданов В.В. , Волков Ю.С.
Условия формосохранения при интерполяции кубическими сплайнами
Математические труды. 2019. Т.22. №1. С.19-67. DOI: 10.33048/mattrudy.2019.22.102 РИНЦ OpenAlex
Идентификаторы БД:
Scopus: 2-s2.0-85076339086
РИНЦ: 43215509
OpenAlex: W2994670009
Цитирование в БД:
БД Цитирований
Scopus 10
РИНЦ 6
OpenAlex 9
Альметрики: