Sciact
  • EN
  • RU

On multifold MDS and perfect codes that are not splittable into onefold codes Full article

Journal Problems of Information Transmission
ISSN: 0032-9460 , E-ISSN: 1608-3253
Output data Year: 2004, Volume: 40, Number: 1, Pages: 5-12 Pages count : 8 DOI: 10.1023/b:prit.0000024875.79605.fc
Authors Krotov D.S. 1 , Potapov V.N. 1
Affiliations
1 Sobolev Institute of Mathematics, Siberian Branch of the RAS, Novosibirsk

Abstract: The union of ℓ disjoint MDS (or perfect) codes with distance 2 (respectively, 3) is always an ℓ-fold MDS (perfect) code. The converse is shown to be incorrect. Moreover, if k is a multiple of 4 and n+1≥16 is a power of two, then a k/2-fold k-ary MDS code of length m≥3 and an (n+1)/8-fold perfect code of length n exist from which no MDS (perfect) code can be isolated.
Cite: Krotov D.S. , Potapov V.N.
On multifold MDS and perfect codes that are not splittable into onefold codes
Problems of Information Transmission. 2004. V.40. N1. P.5-12. DOI: 10.1023/b:prit.0000024875.79605.fc Scopus OpenAlex
Original: Кротов Д.С. , Потапов В.Н.
О кратных МДР- и совершенных кодах, не расщепляемых на однократные
Проблемы передачи информации. 2004. Т.40. №1. С.6-14. РИНЦ
Dates:
Submitted: Dec 20, 2002
Accepted: May 13, 2003
Published print: Jan 31, 2004
Identifiers:
Scopus: 2-s2.0-2542595507
OpenAlex: W2072915944
Citing:
DB Citing
Scopus 10
OpenAlex 12
Altmetrics: