On multifold MDS and perfect codes that are not splittable into onefold codes Full article
Journal |
Problems of Information Transmission
ISSN: 0032-9460 , E-ISSN: 1608-3253 |
||
---|---|---|---|
Output data | Year: 2004, Volume: 40, Number: 1, Pages: 5-12 Pages count : 8 DOI: 10.1023/b:prit.0000024875.79605.fc | ||
Authors |
|
||
Affiliations |
|
Abstract:
The union of ℓ disjoint MDS (or perfect) codes with distance 2 (respectively, 3) is always an ℓ-fold MDS (perfect) code. The converse is shown to be incorrect. Moreover, if k is a multiple of 4 and n+1≥16 is a power of two, then a k/2-fold k-ary MDS code of length m≥3 and an (n+1)/8-fold perfect code of length n exist from which no MDS (perfect) code can be isolated.
Cite:
Krotov D.S.
, Potapov V.N.
On multifold MDS and perfect codes that are not splittable into onefold codes
Problems of Information Transmission. 2004. V.40. N1. P.5-12. DOI: 10.1023/b:prit.0000024875.79605.fc Scopus OpenAlex
On multifold MDS and perfect codes that are not splittable into onefold codes
Problems of Information Transmission. 2004. V.40. N1. P.5-12. DOI: 10.1023/b:prit.0000024875.79605.fc Scopus OpenAlex
Original:
Кротов Д.С.
, Потапов В.Н.
О кратных МДР- и совершенных кодах, не расщепляемых на однократные
Проблемы передачи информации. 2004. Т.40. №1. С.6-14. РИНЦ
О кратных МДР- и совершенных кодах, не расщепляемых на однократные
Проблемы передачи информации. 2004. Т.40. №1. С.6-14. РИНЦ
Dates:
Submitted: | Dec 20, 2002 |
Accepted: | May 13, 2003 |
Published print: | Jan 31, 2004 |
Identifiers:
Scopus: | 2-s2.0-2542595507 |
OpenAlex: | W2072915944 |