Sciact
  • EN
  • RU

Lagrange Interpolation and the Newton–Cotes Formulas on a Bakhvalov Mesh in the Presence of a Boundary Layer Научная публикация

Журнал Computational Mathematics and Mathematical Physics
ISSN: 0965-5425 , E-ISSN: 1555-6662
Вых. Данные Год: 2022, Том: 62, Номер: 3, Страницы: 347-358 Страниц : 12 DOI: 10.1134/S0965542522030149
Ключевые слова Bakhvalov mesh; boundary layer; error estimate; function of one variable; Lagrange interpolation polynomial
Авторы Zadorin A.I. 1 , Zadorin N.A. 1
Организации
1 Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation

Информация о финансировании (3)

1 Российский фонд фундаментальных исследований 20-01-00650
2 Российский фонд фундаментальных исследований 19-31- 60009
3 Институт математики им. С.Л. Соболева СО РАН 0314-2019-0009

Реферат: Abstract: Application of a Lagrange polynomial on a Bakhvalov mesh for the interpolation of a function with large gradients in an exponential boundary layer is studied. The problem is that the use of a Lagrange polynomial on a uniform mesh for interpolation of such a function can lead to errors of order O(1), despite the smallness of the mesh size. The Bakhvalov mesh is widely used for the numerical solution of singularly perturbed problems, and the analysis of interpolation formulas on such a mesh is of interest. Estimates of the error of interpolation by a Lagrange polynomial with an arbitrary number of interpolation nodes on a Bakhvalov mesh are obtained. The result is used to estimate the error of the Newton–Cotes formulas on a Bakhvalov mesh. The results of numerical experiments are presented.
Библиографическая ссылка: Zadorin A.I. , Zadorin N.A.
Lagrange Interpolation and the Newton–Cotes Formulas on a Bakhvalov Mesh in the Presence of a Boundary Layer
Computational Mathematics and Mathematical Physics. 2022. V.62. N3. P.347-358. DOI: 10.1134/S0965542522030149 WOS Scopus РИНЦ OpenAlex
Оригинальная: Задорин А.И. , Задорин Н.А.
Интерполяция Лагранжа и формулы Ньютона-Котеса на сетке Бахвалова при наличии пограничного слоя
Журнал вычислительной математики и математической физики. 2022. Т.62. №3. С.355-366. DOI: 10.31857/S0044466922030140 РИНЦ OpenAlex
Идентификаторы БД:
Web of science: WOS:000783044700001
Scopus: 2-s2.0-85128314615
РИНЦ: 48429400
OpenAlex: W4224054674
Цитирование в БД:
БД Цитирований
Scopus 3
Web of science 3
OpenAlex 2
РИНЦ 2
Альметрики: