Sciact
  • EN
  • RU

Complexity of circulant graphs with non-fixed jumps, its arithmetic properties and asymptotics Научная публикация

Журнал Ars Mathematica Contemporanea
ISSN: 1855-3966 , E-ISSN: 1855-3974
Вых. Данные Год: 2023, Том: 23, Номер: 1, Номер статьи : #P1.08, Страниц : 16 DOI: 10.26493/1855-3974.2530.e7c
Ключевые слова Spanning tree, circulant graph, Laplacian matrix, Chebyshev polynomial, Mahler measure.
Авторы Mednykh Alexander 1,2 , Mednykh Ilya 1,2
Организации
1 Sobolev Institute of Mathematics
2 Novosibirsk State University

Информация о финансировании (1)

1 Министерство науки и высшего образования РФ
Математический центр в Академгородке
075-15-2019-1613, 075-15-2022-281

Реферат: In the present paper, we investigate a family of circulant graphs with non-fixed jumps Gn= Cβn(s1, ... , sk, α1n, ... , αln), 1 ≤ s1< ... < sk≤ [βn/2], 1 ≤ α1< ... < αl ≤ [β/2]. Here n is an arbitrary large natural number and integers s1, ... , sk, α1, ... , αl are supposed to be fixed. First, we present an explicit formula for the number of spanning trees in the graph Gn. This formula is a product of βsk-1 factors, each given by the n-th Chebyshev polynomial of the first kind evaluated at the roots of some prescribed polynomial of degree sk. Next, we provide some arithmetic properties of the complexity function. We show that the number of spanning trees in Gn can be represented in the form τ(n) = p n a(n)2, where a(n) is an integer sequence and p is a prescribed natural number depending of parity of β and n. Finally, we find an asymptotic formula for τ(n) through the Mahler measure of the associated Laurent polynomials differing by a constant from 2k - ∑i = 1k(zsi+z−si).
Библиографическая ссылка: Mednykh A. , Mednykh I.
Complexity of circulant graphs with non-fixed jumps, its arithmetic properties and asymptotics
Ars Mathematica Contemporanea. 2023. V.23. N1. #P1.08 :1-16. DOI: 10.26493/1855-3974.2530.e7c WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 11 янв. 2021 г.
Принята к публикации: 23 мар. 2022 г.
Опубликована online: 21 окт. 2022 г.
Опубликована в печати: 8 февр. 2023 г.
Идентификаторы БД:
Web of science: WOS:000892434600005
Scopus: 2-s2.0-85149695642
РИНЦ: 57161030
OpenAlex: W2905558881
Цитирование в БД:
БД Цитирований
Web of science 1
Scopus 1
OpenAlex 2
Альметрики: