Sciact
  • EN
  • RU

On the number of frequency hypercubes $F^n(4;2,2)$ Научная публикация

Журнал Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Вых. Данные Год: 2021, Том: 62, Номер: 5, Страницы: 951-962 Страниц : 12 DOI: 10.1134/S0037446621050165
Ключевые слова frequency hypercube, frequency square, Latin hypercube, testing set, MDS code
Авторы Shi M.J. 1 , Wang S.K. 1 , Li X.X. 1 , Krotov D.S. 2
Организации
1 School of Mathematical Sciences, Anhui University
2 Sobolev Institute of Mathematics

Реферат: A frequency n-cube F{n}(4;2,2) is an n-dimensional 4-by-…-by-4 array filled by 0s and 1s such that each line contains exactly two 1s. We classify the frequency 4-cubes F{4}(4;2,2), find a testing set of size 25 for F{3}(4;2,2), and derive an upper bound on the number of F{n}(4;2,2). Additionally, for every n greater than 2, we construct an F{n}(4;2,2) that cannot be refined to a Latin hypercube, while each of its sub-F{n-1}(4;2,2) can.
Библиографическая ссылка: Shi M.J. , Wang S.K. , Li X.X. , Krotov D.S.
On the number of frequency hypercubes $F^n(4;2,2)$
Siberian Mathematical Journal. 2021. V.62. N5. P.951-962. DOI: 10.1134/S0037446621050165 WOS Scopus РИНЦ OpenAlex
Оригинальная: Ши М. , Ван Ш. , Ли С. , Кротов Д.С.
О числе частотных гиперкубов Fn(4;2,2)
Сибирский математический журнал. 2021. Т.62. №5. С.1173-1187. DOI: 10.33048/smzh.2021.62.516 РИНЦ OpenAlex
Даты:
Поступила в редакцию: 20 окт. 2020 г.
Принята к публикации: 11 июн. 2021 г.
Опубликована online: 23 сент. 2021 г.
Идентификаторы БД:
Web of science: WOS:000698762500016
Scopus: 2-s2.0-85124958152
РИНЦ: 48152076
OpenAlex: W3202504086
Цитирование в БД:
БД Цитирований
Web of science 1
Scopus 3
РИНЦ 1
OpenAlex 2
Альметрики: