Sciact
  • EN
  • RU

Classification with Incomplete Probabilistic Labeling Based on Manifold Regularization and Fuzzy Clustering Ensemble Научная публикация

Журнал Pattern Recognition and Image Analysis
ISSN: 1054-6618 , E-ISSN: 1555-6212
Вых. Данные Год: 2022, Том: 32, Номер: 3, Страницы: 515-518 Страниц : 4 DOI: 10.1134/S1054661822030075
Ключевые слова cluster ensemble; fuzzy partitioning; low-rank matrix approximation; manifold regularization; probabilistic labeling; weakly supervised learning
Авторы Berikov V.B. 1 , Vikent'ev A.A. 1
Организации
1 Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia

Информация о финансировании (1)

1 Российский научный фонд 22-21-00261

Реферат: The paper proposes a weakly supervised binary classification method which combines manifold regularization and fuzzy clustering ensemble methodologies. We assume that the class labels can be fully supervised, defined in terms of a probability distribution or not specified at all. The co-association matrix of fuzzy clustering ensemble is used as the similarity matrix. This matrix is represented in a low-rank form that significantly speeds up calculations and saves memory. Numerical experiments using Monte Carlo modeling demonstrate the efficiency of the method.
Библиографическая ссылка: Berikov V.B. , Vikent'ev A.A.
Classification with Incomplete Probabilistic Labeling Based on Manifold Regularization and Fuzzy Clustering Ensemble
Pattern Recognition and Image Analysis. 2022. V.32. N3. P.515-518. DOI: 10.1134/S1054661822030075 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 31 мая 2022 г.
Принята к публикации: 31 мая 2022 г.
Опубликована в печати: 19 окт. 2022 г.
Опубликована online: 19 окт. 2022 г.
Идентификаторы БД:
Web of science: WOS:000869886400011
Scopus: 2-s2.0-85140117752
РИНЦ: 49604113
OpenAlex: W4306745292
Цитирование в БД:
БД Цитирований
РИНЦ 1
Альметрики: