Sciact
  • EN
  • RU

Shapley value of homogeneous cooperative games Full article

Journal Computational Mathematics and Mathematical Physics
ISSN: 0965-5425 , E-ISSN: 1555-6662
Output data Year: 2023, Volume: 63, Number: 3, Pages: 450-465 Pages count : 17 DOI: 10.1134/S0965542523030120
Tags Shapley value, Shapley functional, homogeneous cooperative game, polar form of homogeneous game, v-integral
Authors Vasil’ev V.A. 1
Affiliations
1 Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences

Funding (2)

1 Sobolev Institute of Mathematics FWNF-2022-0019
2 Russian Foundation for Basic Research 19-10-00910

Abstract: In the paper, we consider an integral representation of the Shapley value of polynomial cooperative games. This representation is realized via so called Shapley functional. An interconnection between the proposed version of Shapley value and polar forms of homogeneous polynomial games is analyzed both for the finite and infinite number of players. Particular attention is paid to some classes of the homogeneous games generated by the products of nonatomic measures. The main feature of the approach elaborated consists of the systematic application of additive extensions of polynomial set functions to the appropriate symmetric powers of the measure space under consideration.
Cite: Vasil’ev V.A.
Shapley value of homogeneous cooperative games
Computational Mathematics and Mathematical Physics. 2023. V.63. N3. P.450-465. DOI: 10.1134/S0965542523030120 WOS Scopus РИНЦ OpenAlex
Original: Васильев В.А.
Вектор Шепли однородных кооперативных игр
Журнал вычислительной математики и математической физики. 2023. Т.63. №3. С.474-490. DOI: 10.31857/S0044466923030122 РИНЦ OpenAlex
Dates:
Submitted: Aug 20, 2022
Accepted: Nov 17, 2022
Published print: May 2, 2023
Published online: May 2, 2023
Identifiers:
Web of science: WOS:000981318100010
Scopus: 2-s2.0-85153933120
Elibrary: 62102022
OpenAlex: W4367662817
Citing:
DB Citing
Elibrary 1
Altmetrics: