Sciact
  • EN
  • RU

On a weakly supervised classification problem Научная публикация

Конференция The 10th International Conference on Analysis of Images, Social Networks and Texts
16-18 дек. 2021 , Тбилиси
Журнал Lecture Notes in Computer Science
ISSN: 0302-9743 , E-ISSN: 1611-3349
Вых. Данные Год: 2022, Том: 13217, Страницы: 315–329 Страниц : 15 DOI: 10.1007/978-3-031-16500-9_26
Ключевые слова Computed tomography; Low-rank approximation; Manifold regularization; Similarity matrix; Uncertainty model; Weakly supervised classification
Авторы Berikov Vladimir 1,2 , Litvinenko Alexander 3 , Pestunov Igor 4 , Sinyavskiy Yuriy 4
Организации
1 Sobolev Institute of Mathematics, Novosibirsk, Russia
2 Novosibirsk State University, Novosibirsk, Russia
3 RWTH Aachen, Aachen, Germany
4 Federal Research Center for Information and Computational Technologies, Novosibirsk, Russia

Информация о финансировании (2)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0015
2 Российский фонд фундаментальных исследований 19-29-01175

Реферат: We consider a weakly supervised classification problem. It is a classification problem where the target variable can be unknown or uncertain for some subset of samples. This problem appears when the labeling is impossible, time-consuming, or expensive. Noisy measurements and lack of data may prevent accurate labeling. Our task is to build an optimal classification function. For this, we construct and minimize a specific objective function, which includes the fitting error on labeled data and a smoothness term. Next, we use covariance and radial basis functions to define the degree of similarity between points. The further process involves the repeated solution of an extensive linear system with the graph Laplacian operator. To speed up this solution process, we introduce low-rank approximation techniques. We call the resulting algorithm WSC-LR. Then we use the WSC-LR algorithm for analysis CT brain scans to recognize ischemic stroke disease. We also compare WSC-LR with other well-known machine learning algorithms.
Библиографическая ссылка: Berikov V. , Litvinenko A. , Pestunov I. , Sinyavskiy Y.
On a weakly supervised classification problem
Lecture Notes in Computer Science. 2022. V.13217. P.315–329. DOI: 10.1007/978-3-031-16500-9_26 Scopus OpenAlex
Идентификаторы БД:
Scopus: 2-s2.0-85142694919
OpenAlex: W4312848287
Цитирование в БД:
БД Цитирований
Scopus 1
Альметрики: