On the gaps of the spectrum of volumes of trades Научная публикация
Журнал |
Journal of Combinatorial Designs
ISSN: 1063-8539 |
||
---|---|---|---|
Вых. Данные | Год: 2018, Том: 26, Номер: 3, Страницы: 119-126 Страниц : 8 DOI: 10.1002/jcd.21592 | ||
Ключевые слова | minimum volume, Reed–Muller code, t-design, trade | ||
Авторы |
|
||
Организации |
|
Реферат:
A pair {T0,T1} of disjoint collections of k-subsets (blocks) of a set V of cardinality v is called a t-(v,k) trade or simply a t-trade if every t-subset of V is included in the same number of blocks of T0 and T1. The cardinality of T0 is called the volume of the trade. Using the weight distribution of the Reed--Muller code, we prove the conjecture that for every i from 2 to t, there are no t-trades of volume greater than 2^{t+1}-2^i and less than 2^{t+1}-2^{i-1} and derive restrictions on the t-trade volumes that are less than 2^{t+1}+2^{t-1}.
Библиографическая ссылка:
Krotov D.S.
On the gaps of the spectrum of volumes of trades
Journal of Combinatorial Designs. 2018. V.26. N3. P.119-126. DOI: 10.1002/jcd.21592 WOS Scopus РИНЦ OpenAlex
On the gaps of the spectrum of volumes of trades
Journal of Combinatorial Designs. 2018. V.26. N3. P.119-126. DOI: 10.1002/jcd.21592 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: | 19 дек. 2016 г. |
Принята к публикации: | 14 окт. 2017 г. |
Опубликована online: | 1 нояб. 2017 г. |
Идентификаторы БД:
Web of science: | WOS:000419829900002 |
Scopus: | 2-s2.0-85032834218 |
РИНЦ: | 35476393 |
OpenAlex: | W3101061236 |