Sciact
  • EN
  • RU

On the gaps of the spectrum of volumes of trades Научная публикация

Журнал Journal of Combinatorial Designs
ISSN: 1063-8539
Вых. Данные Год: 2018, Том: 26, Номер: 3, Страницы: 119-126 Страниц : 8 DOI: 10.1002/jcd.21592
Ключевые слова minimum volume, Reed–Muller code, t-design, trade
Авторы Krotov D.S. 1
Организации
1 Sobolev Institute of Mathematics

Реферат: A pair {T0,T1} of disjoint collections of k-subsets (blocks) of a set V of cardinality v is called a t-(v,k) trade or simply a t-trade if every t-subset of V is included in the same number of blocks of T0 and T1. The cardinality of T0 is called the volume of the trade. Using the weight distribution of the Reed--Muller code, we prove the conjecture that for every i from 2 to t, there are no t-trades of volume greater than 2^{t+1}-2^i and less than 2^{t+1}-2^{i-1} and derive restrictions on the t-trade volumes that are less than 2^{t+1}+2^{t-1}.
Библиографическая ссылка: Krotov D.S.
On the gaps of the spectrum of volumes of trades
Journal of Combinatorial Designs. 2018. V.26. N3. P.119-126. DOI: 10.1002/jcd.21592 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 19 дек. 2016 г.
Принята к публикации: 14 окт. 2017 г.
Опубликована online: 1 нояб. 2017 г.
Идентификаторы БД:
Web of science: WOS:000419829900002
Scopus: 2-s2.0-85032834218
РИНЦ: 35476393
OpenAlex: W3101061236
Цитирование в БД:
БД Цитирований
Web of science 6
Scopus 6
OpenAlex 8
Альметрики: