Sciact
  • EN
  • RU

Asymptotic inversion formulas in 3D vector field tomography for different geometries Научная публикация

Журнал Journal of Inverse and Ill-Posed Problems
ISSN: 0928-0219 , E-ISSN: 1569-3945
Вых. Данные Год: 2011, Том: 19, Номер: 4-5, Страницы: 769-799 Страниц : 31 DOI: 10.1515/jiip.2011.049
Ключевые слова Ray transform; scalar field; vector field; Zernike polynomials; Gegenbauer polynomials; x-ray transform; longitudinal ray transform; parallel geometry; cone beam geometry
Авторы Kazantsev Sergey G. 1 , Schuster Thomas 2
Организации
1 Sobolev Institute of Mathematics
2 Department of Mathematics, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany

Реферат: We study the problem of recovering scalar fields and solenoidal vector fields supported in the unit ball in from tomographic data. We consider three different measurement settings: the case of full data, where the ray sources cover the entire unit sphere and the rays spread in all directions, the case of parallel geometry which is to be understood slice-by-slice as well as the case of cone beam data where the sources are located on a trajectory surrounding the object and the rays are emitted in directions that are bounded by a cone. We formulate an asymptotic inversion formula for the case of full data using an expansion of the searched object in orthogonal polynomials and show how this inversion formula remains valid even for the parallel and cone beam geometry, where for the latter one the source trajectory has to satisfy a certain Tuy condition for vector fields.
Библиографическая ссылка: Kazantsev S.G. , Schuster T.
Asymptotic inversion formulas in 3D vector field tomography for different geometries
Journal of Inverse and Ill-Posed Problems. 2011. V.19. N4-5. P.769-799. DOI: 10.1515/jiip.2011.049 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: WOS:000296891400009
Scopus: 2-s2.0-81155126188
OpenAlex: W2332604986
Цитирование в БД:
БД Цитирований
Scopus 10
OpenAlex 8
Web of science 10
Альметрики: