Sciact
  • EN
  • RU

The number of the non‐full‐rank Steiner triple systems Научная публикация

Журнал Journal of Combinatorial Designs
ISSN: 1063-8539
Вых. Данные Год: 2019, Том: 27, Номер: 10, Страницы: 571-585 Страниц : 15 DOI: 10.1002/jcd.21663
Ключевые слова 2‐rank, 3‐rank, Steiner triple system
Авторы Shi M. 1 , Xu L. 1 , Krotov D.S. 2
Организации
1 Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Mathematics, Anhui University, Hefei, Anhui Province, P.R. China
2 Sobolev Institute of Mathematics, Novosibirsk, Russia

Реферат: The p-rank of a Steiner triple system (STS) B is the dimension of the linear span of the set of characteristic vectors of blocks of p, over GF(p). We derive a formula for the number of different STSs of order v and given 2-rank r2, r2<v, and a formula for the number of STSs of order v and given 3-rank r3, r3<v-1. Also, we prove that there are no STSs of 2-rank smaller than v and, at the same time, 3-rank smaller than v-1. Our results extend previous study on enumerating STSs according to the rank of their codes, mainly by Tonchev, V.A. Zinoviev, and D.V. Zinoviev for the binary case and by Jungnickel and Tonchev for the ternary case.
Библиографическая ссылка: Shi M. , Xu L. , Krotov D.S.
The number of the non‐full‐rank Steiner triple systems
Journal of Combinatorial Designs. 2019. V.27. N10. P.571-585. DOI: 10.1002/jcd.21663 WOS Scopus РИНЦ OpenAlex
Даты:
Опубликована online: 1 авг. 2019 г.
Идентификаторы БД:
Web of science: WOS:000480071100001
Scopus: 2-s2.0-85070091017
РИНЦ: 41622880
OpenAlex: W3103931004
Цитирование в БД:
БД Цитирований
Web of science 5
Scopus 5
РИНЦ 4
OpenAlex 6
Альметрики: