Sciact
  • EN
  • RU

Self-dual bent sequences for complex Hadamard matrices Научная публикация

Журнал Designs, Codes and Cryptography
ISSN: 0925-1022 , E-ISSN: 1573-7586
Вых. Данные Год: 2023, Том: 91, Номер: 4, Страницы: 1453-1474 Страниц : 22 DOI: 10.1007/s10623-022-01157-6
Ключевые слова Bent sequences, Complex Hadamard matrices, Regular complex Hadamard matrices, Bush-type complex Hadamard matrices, Mixed-skew Hadamard matrices
Авторы Shi M. 1 , Li Y. 1 , Cheng W. 2 , Crnković D. 3 , Krotov D. 4 , Solé P. 5
Организации
1 School of Mathematical Sciences, Anhui University, Hefei 230601, Anhui, China
2 Télécom of Paris, Secure-IC University S.A.S., 104 Boulevard du Montparnasse, 75014 Paris, France
3 Faculty of Mathematics, University of Rijeka, Rijeka, Croatia
4 Sobolev Institute of Mathematics, Novosibirsk, Russia, 630090
5 CNRS, University of Aix Marseille, Centrale Marseille, I2M, Marseille, France

Информация о финансировании (1)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0017

Реферат: A new notion of bent sequence related to Hadamard matrices was introduced recently, motivated by a security application (Solé et al. 2021). In this paper we introduce the analogous notion for complex Hadamard matrices, and we study the self-dual class in length at most 90. We use three competing methods of generation: Brute force, Linear Algebra and Groebner bases. Regular complex Hadamard matrices and Bush-type complex Hadamard matrices provide many examples. We introduce the strong automorphism group of complex Hadamard matrices, which acts on their associated self-dual bent sequences. We give an efficient algorithm to compute that group. We also answer the question which complex Hadamard matrices can be uniquely reconstructed from the off-diagonal elements, define a related concept of mixed-skew Hadamard matrix, and show the existence of mixed-skew Hadamard matrices of small orders.
Библиографическая ссылка: Shi M. , Li Y. , Cheng W. , Crnković D. , Krotov D. , Solé P.
Self-dual bent sequences for complex Hadamard matrices
Designs, Codes and Cryptography. 2023. V.91. N4. P.1453-1474. DOI: 10.1007/s10623-022-01157-6 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 25 апр. 2022 г.
Принята к публикации: 9 нояб. 2022 г.
Опубликована online: 12 дек. 2022 г.
Опубликована в печати: 20 апр. 2023 г.
Идентификаторы БД:
Web of science: WOS:000899060100002
Scopus: 2-s2.0-85143845516
РИНЦ: 59841260
OpenAlex: W4310858567
Цитирование в БД:
БД Цитирований
Scopus 2
Web of science 2
OpenAlex 2
Альметрики: