Polynomial basis in the space of vector functions $H^1_0$ and stokes system in a ball Научная публикация
Журнал |
Eurasian Journal of Mathematical and Computer Applications
ISSN: 2306-6172 , E-ISSN: 2308-9822 |
||
---|---|---|---|
Вых. Данные | Год: 2022, Том: 10, Номер: 4, Страницы: 73- –95 Страниц : 23 DOI: 10.32523/2306-6172-2022-10-4-73-95 | ||
Ключевые слова | Vector spherical harmonics, vector fields, potential field, solenoidal field, polynomial vector functions, Sobolev space, orthogonal basis, Stokes prodktv | ||
Авторы |
|
||
Организации |
|
Информация о финансировании (1)
1 | Институт математики им. С.Л. Соболева СО РАН | 0314-2019-0011 |
Реферат:
In this paper orthogonal polynomial basis in the homogeneous Sobolev space of vector functions $H^1_0(B^3) $ is constructed. Some of this vector functions are vector potentials for solenoidal fields from the basis of the space $L_2(B^3).$ Finaly the Dirichlet boundary value problem for the stationary Stokes system in a ball is solved. Two approaches to solve this problem in the form of series are proposed.
Библиографическая ссылка:
Kazantsev S.G.
Polynomial basis in the space of vector functions $H^1_0$ and stokes system in a ball
Eurasian Journal of Mathematical and Computer Applications. 2022. V.10. N4. P.73- –95. DOI: 10.32523/2306-6172-2022-10-4-73-95 WOS Scopus
Polynomial basis in the space of vector functions $H^1_0$ and stokes system in a ball
Eurasian Journal of Mathematical and Computer Applications. 2022. V.10. N4. P.73- –95. DOI: 10.32523/2306-6172-2022-10-4-73-95 WOS Scopus
Даты:
Поступила в редакцию: | 17 авг. 2022 г. |
Принята к публикации: | 13 окт. 2022 г. |
Опубликована в печати: | 26 дек. 2022 г. |
Опубликована online: | 26 дек. 2022 г. |
Идентификаторы БД:
Web of science: | WOS:000927495200004 |
Scopus: | 2-s2.0-85144959247 |
Цитирование в БД:
Пока нет цитирований