Sciact
  • EN
  • RU

Visual Word based Neural Tree for Interpretable Recognition of Images Научная публикация

Конференция 2nd International Conference “Problems of Informatics, Electronics and Radio Engineering
11-13 нояб. 2022 , Новосибирск
Сборник 2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON)
Сборник, IEEE. 2022. 6 c. ISBN 9781665464802.
Вых. Данные Год: 2023, Страницы: 1830-1835 Страниц : 6 DOI: 10.1109/sibircon56155.2022.10017004
Ключевые слова bag of visual words, computer tomography, convolutional network, decision tree, interpretability
Авторы Kozinets Roman 2 , Berikov Vladimir 1
Организации
1 Data Analysis Lab, Sobolev Institute of Mathematics, Novosibirsk, Russia
2 Dept. of Theoretical Cybernetics, Novosibirsk State University, Novosibirsk, Russia

Информация о финансировании (2)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0015
2 Российский фонд фундаментальных исследований 19-29-01175

Реферат: It is necessary to have an explanation of the model prediction to increase confidence in the decision making in a broad range of image recognition tasks, especially medical image recognition.In this paper, we proposed a new method of interpretable image recognition. The basic idea was to use a combination of convolutional neural network, similarity based decision tree, and a trainable bag of visual words. During recognition, the model compared parts of the image with trained templates and made a decision based on the similarity between them. The recognition process was presented as a sequence of logical decision rules which can be easily understood by specialists in the applied area. This technique is similar to the human way of visual recognition. Testing on two datasets showed a competitive recognition quality of the proposed method, compared to a classical convolutional network ResNet50. At the same time, the method provided a possibility of interpreting the prediction.
Библиографическая ссылка: Kozinets R. , Berikov V.
Visual Word based Neural Tree for Interpretable Recognition of Images
В сборнике 2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON). – IEEE., 2023. – C.1830-1835. – ISBN 9781665464802. DOI: 10.1109/sibircon56155.2022.10017004 Scopus OpenAlex
Даты:
Принята к публикации: 11 нояб. 2022 г.
Опубликована в печати: 26 янв. 2023 г.
Опубликована online: 26 янв. 2023 г.
Идентификаторы БД:
Scopus: 2-s2.0-85147505671
OpenAlex: W4317826546
Цитирование в БД: Пока нет цитирований
Альметрики: