On Invariant Surfaces in the Phase Portraits of Models of Circular Gene Networks Full article
Journal |
Journal of Applied and Industrial Mathematics
ISSN: 1990-4789 , E-ISSN: 1990-4797 |
||
---|---|---|---|
Output data | Year: 2022, Volume: 16, Number: 4, Pages: 589–595 Pages count : 7 DOI: 10.1134/S1990478922040019 | ||
Tags | block-linear dynamical system, invariant domain, invariant surface, Poincare map, fixed point, cycle, Grobman–Hartman theorem, Perron–Frobenius theorem | ||
Authors |
|
||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | FWNF-2022-0009 |
Abstract:
For block-linear dynamical systems of dimensions 3 and 4 considered as models of simplest circular gene networks, we find sufficient conditions for the existence of invariant surfaces in their phase portraits. These surfaces contain periodic trajectories of the dynamical systems.
Cite:
Ayupova N.B.
, Golubyatnikov V.P.
, Minushkina L.S.
On Invariant Surfaces in the Phase Portraits of Models of Circular Gene Networks
Journal of Applied and Industrial Mathematics. 2022. V.16. N4. P.589–595. DOI: 10.1134/S1990478922040019 Scopus РИНЦ OpenAlex
On Invariant Surfaces in the Phase Portraits of Models of Circular Gene Networks
Journal of Applied and Industrial Mathematics. 2022. V.16. N4. P.589–595. DOI: 10.1134/S1990478922040019 Scopus РИНЦ OpenAlex
Original:
Аюпова Н.Б.
, Голубятников В.П.
, Минушкина Л.С.
Об инвариантных поверхностях в фазовых портретах моделей кольцевых генных сетей
Сибирский журнал индустриальной математики. 2022. Т.25. №4. С.5-13. DOI: 10.33048/SIBJIM.2022.25.401 РИНЦ
Об инвариантных поверхностях в фазовых портретах моделей кольцевых генных сетей
Сибирский журнал индустриальной математики. 2022. Т.25. №4. С.5-13. DOI: 10.33048/SIBJIM.2022.25.401 РИНЦ
Dates:
Submitted: | Apr 25, 2022 |
Accepted: | Jun 22, 2022 |
Published print: | Nov 30, 2022 |
Published online: | Nov 30, 2022 |
Identifiers:
Scopus: | 2-s2.0-85149995170 |
Elibrary: | 59116812 |
OpenAlex: | W4323344580 |