Sciact
  • EN
  • RU

On Invariant Surfaces in the Phase Portraits of Models of Circular Gene Networks Full article

Journal Journal of Applied and Industrial Mathematics
ISSN: 1990-4789 , E-ISSN: 1990-4797
Output data Year: 2022, Volume: 16, Number: 4, Pages: 589–595 Pages count : 7 DOI: 10.1134/S1990478922040019
Tags block-linear dynamical system, invariant domain, invariant surface, Poincare map, fixed point, cycle, Grobman–Hartman theorem, Perron–Frobenius theorem
Authors Ayupova N.B. 1 , Golubyatnikov V.P. 1 , Minushkina L.S. 1
Affiliations
1 Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0009

Abstract: For block-linear dynamical systems of dimensions 3 and 4 considered as models of simplest circular gene networks, we find sufficient conditions for the existence of invariant surfaces in their phase portraits. These surfaces contain periodic trajectories of the dynamical systems.
Cite: Ayupova N.B. , Golubyatnikov V.P. , Minushkina L.S.
On Invariant Surfaces in the Phase Portraits of Models of Circular Gene Networks
Journal of Applied and Industrial Mathematics. 2022. V.16. N4. P.589–595. DOI: 10.1134/S1990478922040019 Scopus РИНЦ OpenAlex
Original: Аюпова Н.Б. , Голубятников В.П. , Минушкина Л.С.
Об инвариантных поверхностях в фазовых портретах моделей кольцевых генных сетей
Сибирский журнал индустриальной математики. 2022. Т.25. №4. С.5-13. DOI: 10.33048/SIBJIM.2022.25.401 РИНЦ
Dates:
Submitted: Apr 25, 2022
Accepted: Jun 22, 2022
Published print: Nov 30, 2022
Published online: Nov 30, 2022
Identifiers:
Scopus: 2-s2.0-85149995170
Elibrary: 59116812
OpenAlex: W4323344580
Citing:
DB Citing
Scopus 2
OpenAlex 2
Elibrary 1
Altmetrics: