Coincidence of set functions in quasiconformal analysis Научная публикация
Журнал |
Sbornik Mathematics
ISSN: 1064-5616 , E-ISSN: 1468-4802 |
||
---|---|---|---|
Вых. Данные | Год: 2022, Том: 213, Номер: 9, Страницы: 1157–1186 Страниц : 29 DOI: 10.4213/sm9702e | ||
Ключевые слова | quasiconformal analysis, Sobolev space, composition operator, condenser capacity, outer operator distortion function, set function | ||
Авторы |
|
||
Организации |
|
Информация о финансировании (1)
1 | Институт математики им. С.Л. Соболева СО РАН | FWNF-2022-0006 |
Реферат:
It is known that mappings occurring in quasiconformal analysis can be defined in several equivalent ways: 1) as homeomorphisms inducing bounded composition operators between Sobolev spaces; 2) as Sobolev-class homeomorphisms with bounded distortion whose operator distortion function is integrable; 3) as homeomorphism changing the capacity of the image
of a condenser in a controllable way in terms of the weighted capacity of the condenser in the source space; 4) as homeomorphism changing the modulus of the image of a family of curves in a controllable way in terms of the weighted modulus of the family of curves in the source space. A certain set function, defined on open subsets, can be associated with each of these definitions.
The main result consists in the fact that all these set functions coincide.
Библиографическая ссылка:
Vodopyanov S.K.
Coincidence of set functions in quasiconformal analysis
Sbornik Mathematics. 2022. V.213. N9. P.1157–1186. DOI: 10.4213/sm9702e WOS Scopus РИНЦ OpenAlex
Coincidence of set functions in quasiconformal analysis
Sbornik Mathematics. 2022. V.213. N9. P.1157–1186. DOI: 10.4213/sm9702e WOS Scopus РИНЦ OpenAlex
Оригинальная:
Водопьянов С.К.
О совпадении функций множества в квазиконформном анализе
Математический сборник. 2022. Т.213. №9. С.3-33. DOI: 10.4213/sm9702 РИНЦ OpenAlex
О совпадении функций множества в квазиконформном анализе
Математический сборник. 2022. Т.213. №9. С.3-33. DOI: 10.4213/sm9702 РИНЦ OpenAlex
Даты:
Поступила в редакцию: | 27 янв. 2022 г. |
Принята к публикации: | 22 февр. 2023 г. |
Опубликована online: | 1 мар. 2023 г. |
Идентификаторы БД:
Web of science: | WOS:000992271700001 |
Scopus: | 2-s2.0-85165898294 |
РИНЦ: | 59290788 |
OpenAlex: | W4381306353 |