Sciact
  • EN
  • RU

Data-driven regularization of inverse problem for SEIR-HCD model of covid-19 propagation in Novosibirsk region Научная публикация

Журнал Eurasian Journal of Mathematical and Computer Applications
ISSN: 2306-6172 , E-ISSN: 2308-9822
Вых. Данные Год: 2022, Том: 10, Номер: 1, Страницы: 51-68 Страниц : 18 DOI: 10.32523/2306-6172-2022-10-1-51-68
Ключевые слова epidemiology, compartment modeling, basic reproduction number, COVID-19, inverse problem, regularization.
Авторы Krivorotko O.I. 1,2 , Zyatkov N.Y. 2
Организации
1 Novosibirsk State University, Pirogova str. 2
2 Institute of Computational Mathematics and Mathematical Geophysics of SB RAS, prospect Akademika Lavrentjeva 6

Реферат: The inverse problem for SEIR-HCD model of COVID-19 propagation in Novosibirsk region described by system of seven nonlinear ordinary differential equations (ODE) is numerical investigated. The inverse problem consists in identification of coefficients of ODE system (infection rate, portions of infected, hospitalized, mortality cases) and some initial conditions (initial number of asymptomatic and symptomatic infectious) by additional measurements about daily diagnosed, critical and mortality cases of COVID-19. Due to ill-posedness of inverse problem the regularization is applied based on usage of additional information about antibodies IgG to COVID-19 and detailed mortality statistics. The inverse problem is reduced to a minimization problem of misfit function. We apply data-driven approach based on combination of global (OPTUNA software) and gradient-type methods for solving the minimization problem. The numerical results show that adding new information and detailed statistics increased the forecasting scenario in 2 times.
Библиографическая ссылка: Krivorotko O.I. , Zyatkov N.Y.
Data-driven regularization of inverse problem for SEIR-HCD model of covid-19 propagation in Novosibirsk region
Eurasian Journal of Mathematical and Computer Applications. 2022. V.10. N1. P.51-68. DOI: 10.32523/2306-6172-2022-10-1-51-68 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 19 дек. 2021 г.
Принята к публикации: 6 февр. 2022 г.
Опубликована в печати: 7 июн. 2022 г.
Опубликована online: 7 июн. 2022 г.
Идентификаторы БД:
Web of science: WOS:000774219600004
Scopus: 2-s.2-85129918202
РИНЦ: 48584566
OpenAlex: W4220900595
Цитирование в БД:
БД Цитирований
Web of science 6
OpenAlex 10
Альметрики: