Recognition of affine-equivalent polyhedra by their natural developments Full article
Journal |
Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260 |
||||
---|---|---|---|---|---|
Output data | Year: 2023, Volume: 64, Number: 2, Pages: 269-286 Pages count : 18 DOI: 10.1134/S0037446623020027 | ||||
Tags | Euclidean 3-space, convex polyhedron, development of a polyhedron, Cauchy rigidity theorem, affine-equivalent polyhedra, Cayley-Menger determinant | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | FWNF-2022-0006 |
Abstract:
The classical Cauchy rigidity theorem for convex polytopes reads that if two convex polytopes have isometric developments then they are congruent. In other words, we can decide whether two convex polyhedra are isometric or not by only using their developments. We study a similar problem of whether it is possible to understand that two convex polyhedra in Euclidean 3-space are affine-equivalent by only using their developments.
Cite:
Alexandrov V.A.
Recognition of affine-equivalent polyhedra by their natural developments
Siberian Mathematical Journal. 2023. V.64. N2. P.269-286. DOI: 10.1134/S0037446623020027 WOS Scopus РИНЦ OpenAlex
Recognition of affine-equivalent polyhedra by their natural developments
Siberian Mathematical Journal. 2023. V.64. N2. P.269-286. DOI: 10.1134/S0037446623020027 WOS Scopus РИНЦ OpenAlex
Original:
Александров В.А.
Распознавание аффинно-эквивалентных многогранников по их натуральным разверткам
Сибирский математический журнал. 2023. Т.64. №2. С.252-275. DOI: 10.33048/smzh.2023.64.202 РИНЦ
Распознавание аффинно-эквивалентных многогранников по их натуральным разверткам
Сибирский математический журнал. 2023. Т.64. №2. С.252-275. DOI: 10.33048/smzh.2023.64.202 РИНЦ
Dates:
Submitted: | Jun 24, 2021 |
Accepted: | Jan 10, 2023 |
Published print: | Mar 24, 2023 |
Published online: | Mar 24, 2023 |
Identifiers:
Web of science: | WOS:000984262300002 |
Scopus: | 2-s2.0-85151091280 |
Elibrary: | 61120374 |
OpenAlex: | W3175127300 |