Sciact
  • EN
  • RU

High-Degree Polynomial Integrals of a Natural System on the Two-Dimensional Torus Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2023, Volume: 64, Number: 2, Pages: 261–268 Pages count : 8 DOI: 10.1134/S0037446623020015
Tags natural mechanical system, first integral polynomial in momenta, spectrum of the potential
Authors Agapov S.V. 1,2
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russia
2 Novosibirsk State University, Novosibirsk, Russia

Funding (1)

1 Russian Science Foundation 19-11-00044

Abstract: We study a natural mechanical system on the two-dimensional torus which admits an addi-tional first integral polynomial in momenta of an odd degree Nand independent of the energy integral. For N=5,7, we obtain the estimates on the number of straight lines in the spectrum of the potential
Cite: Agapov S.V.
High-Degree Polynomial Integrals of a Natural System on the Two-Dimensional Torus
Siberian Mathematical Journal. 2023. V.64. N2. P.261–268. DOI: 10.1134/S0037446623020015 WOS Scopus РИНЦ OpenAlex
Original: Агапов С.В.
Полиномиальные интегралы высокой степени натуральной системы на двумерном торе.
Сибирский математический журнал. 2023. Т.64. №2. С.243-251. DOI: 10.33048/smzh.2023.64.201 РИНЦ
Dates:
Submitted: Jul 13, 2022
Accepted: Aug 15, 2022
Published print: Mar 24, 2023
Published online: Apr 24, 2023
Identifiers:
Web of science: WOS:000984262300001
Scopus: 2-s2.0-85151085100
Elibrary: 61189424
OpenAlex: W4360831411
Citing:
DB Citing
Scopus 1
Web of science 1
OpenAlex 1
Elibrary 1
Altmetrics: