High-Degree Polynomial Integrals of a Natural System on the Two-Dimensional Torus Full article
Journal |
Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260 |
||||
---|---|---|---|---|---|
Output data | Year: 2023, Volume: 64, Number: 2, Pages: 261–268 Pages count : DOI: 10.1134/S0037446623020015 | ||||
Tags | natural mechanical system, first integral polynomial in momenta, spectrum of the potential | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 | Russian Science Foundation | 19-11-00044 |
Abstract:
We study a natural mechanical system on the two-dimensional torus which admits an addi-tional first integral polynomial in momenta of an odd degree Nand independent of the energy integral.For N=5,7, we obtain the estimates on the number of straight lines in the spectrum of the potential
Cite:
Agapov S.V.
High-Degree Polynomial Integrals of a Natural System on the Two-Dimensional Torus
Siberian Mathematical Journal. 2023. V.64. N2. P.261–268. DOI: 10.1134/S0037446623020015 WOS Scopus РИНЦ OpenAlex
High-Degree Polynomial Integrals of a Natural System on the Two-Dimensional Torus
Siberian Mathematical Journal. 2023. V.64. N2. P.261–268. DOI: 10.1134/S0037446623020015 WOS Scopus РИНЦ OpenAlex
Original:
Агапов С.В.
Полиномиальные интегралы высокой степени натуральной системы на двумерном торе.
Сибирский математический журнал. 2023. Т.64. №2. С.243-251. DOI: 10.33048/smzh.2023.64.201 РИНЦ
Полиномиальные интегралы высокой степени натуральной системы на двумерном торе.
Сибирский математический журнал. 2023. Т.64. №2. С.243-251. DOI: 10.33048/smzh.2023.64.201 РИНЦ
Dates:
Published print: | Mar 24, 2023 |
Identifiers:
Web of science: | WOS:000984262300001 |
Scopus: | 2-s2.0-85151085100 |
Elibrary: | 61189424 |
OpenAlex: | W4360831411 |