Sciact
  • EN
  • RU

The Spectrum and Lyapunov Linear Instability of the Stationary State for Polymer Fluid Flows:The Vinogradov–Pokrovskii Model Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2023, Volume: 64, Number: 2, Pages: 407-423 Pages count : 17 DOI: 10.1134/s0037446623020131
Tags incompressible viscoelastic polymer medium, rheological relation, stationary state, linearized mixed problem, Lyapunov stability
Authors Tkachev D.L. 1
Affiliations
1 Sobolev Institute of Mathematics

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0008

Abstract: We study the Lyapunov linear stability of the stationary state for flows of an incompressible viscoelastic polymer fluid in an infinite planar channel. As a model we choose the Vinogradov–Pokrovskii rheological model well-suited for describing the flow characteristics of linear polymer melts. We find the spectrum of the mixed problem and prove that the solution to the linearized mixed problem in the class of periodic perturbations of the variable changing along the channel side grows faster in time than the exponential with a linear exponent. In other words, the stationary state is linearly unstable.
Cite: Tkachev D.L.
The Spectrum and Lyapunov Linear Instability of the Stationary State for Polymer Fluid Flows:The Vinogradov–Pokrovskii Model
Siberian Mathematical Journal. 2023. V.64. N2. P.407-423. DOI: 10.1134/s0037446623020131 WOS Scopus РИНЦ OpenAlex
Original: Ткачев Д.Л.
Спектр и линейная неустойчивость по Ляпунову состояния покоя для течений полимерной жидкости (модель Виноградова — Покровского)
Сибирский математический журнал. 2023. Т.64. №2. С.423–440. DOI: 10.33048/smzh.2023.64.213 РИНЦ
Dates:
Submitted: Apr 1, 2022
Accepted: Jan 10, 2023
Published print: Mar 24, 2023
Published online: Mar 24, 2023
Identifiers:
Web of science: WOS:000984262300013
Scopus: 2-s2.0-85151069056
Elibrary: 61123490
OpenAlex: W4360831367
Citing:
DB Citing
Scopus 3
Web of science 3
OpenAlex 1
Elibrary 1
Altmetrics: