Sciact
  • EN
  • RU

Quasi-cyclic perfect codes in Doob graphs and special partitions of Galois rings Научная публикация

Журнал IEEE Transactions on Information Theory
ISSN: 0018-9448 , E-ISSN: 1557-9654
Вых. Данные Год: 2023, Том: 69, Номер: 9, Номер статьи : 3272566, Страниц : 7 DOI: 10.1109/TIT.2023.3272566
Ключевые слова Doob graph, Galois ring, 1-perfect code, quasicyclic code
Авторы Shi M. 1 , Li X. 1 , Krotov D.S. 2 , Özbudak F. 3,4
Организации
1 Key Laboratory of Intelligent Computing and Signal Processing, School of Mathematical Sciences, Ministry of Education, Anhui University
2 State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences
3 Faculty of Engineering and Natural Sciences, Sabancı University, 34956, Istanbul
4 D.M., Institute of Applied Mathematics, Middle East Technical University, 06800 Ankara, Turkey

Информация о финансировании (1)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0017

Реферат: The Galois ring GR(4Delta) is the residue ring Z_4[x]/(h(x)), where h(x) is a basic primitive polynomial of degree Delta over Z_4. For any odd Delta larger than 1, we construct a partition of GR(4Delta) \{0} into 6-subsets of type {a,b,-a-b,-a,-b,a+b} and 3-subsets of type {c,-c,2c} such that the partition is invariant under the multiplication by a nonzero element of the Teichmuller set in GR(4Delta) and, if Delta is not a multiple of 3, under the action of the automorphism group of GR(4Delta). As a corollary, this implies the existence of quasi-cyclic additive 1-perfect codes of index (2Delta-1) in D((2Delta-1)(2Delta-2)/{6}, 2Delta-1 ) where D(m,n) is the Doob metric scheme on Z^{2m+n}.
Библиографическая ссылка: Shi M. , Li X. , Krotov D.S. , Özbudak F.
Quasi-cyclic perfect codes in Doob graphs and special partitions of Galois rings
IEEE Transactions on Information Theory. 2023. V.69. N9. 3272566 :1-7. DOI: 10.1109/TIT.2023.3272566 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 12 апр. 2022 г.
Принята к публикации: 22 апр. 2023 г.
Опубликована в печати: 27 апр. 2023 г.
Опубликована online: 27 апр. 2023 г.
Идентификаторы БД:
Web of science: WOS:001064724800006
Scopus: 2-s2.0-85159840820
РИНЦ: 64379700
OpenAlex: W4368232606
Цитирование в БД:
БД Цитирований
Scopus 1
Альметрики: