Sciact
  • EN
  • RU

On the Existence of Viscosity Solutions of Anisotropic Parabolic Equations with Time-Dependent Anisotropy Exponents Full article

Journal Journal of Applied and Industrial Mathematics
ISSN: 1990-4789 , E-ISSN: 1990-4797
Output data Year: 2022, Volume: 16, Number: 4, Pages: 821-833 Pages count : 13 DOI: 10.1134/s1990478922040214
Tags anisotropic parabolic equation, viscosity solution, time-dependent anisotropy exponent
Authors Tersenov Ar.S. 1
Affiliations
1 Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0008

Abstract: We consider the Cauchy–Dirichlet problem for an anisotropic parabolic equation with a gradient term that does not satisfy the Bernstein–Nagumo condition. The existence and uniqueness of a viscosity solution of this problem is proved. This solution is H¨ older continuous in time and Lipschitz continuous in the spatial variables.
Cite: Tersenov A.S.
On the Existence of Viscosity Solutions of Anisotropic Parabolic Equations with Time-Dependent Anisotropy Exponents
Journal of Applied and Industrial Mathematics. 2022. V.16. N4. P.821-833. DOI: 10.1134/s1990478922040214 Scopus РИНЦ OpenAlex
Original: Терсенов А.С.
О существовании вязких решений анизотропных параболических уравнений с переменными показателями анизотропности
Сибирский журнал индустриальной математики. 2022. Т.25. №4. С.206 - 220. DOI: 10.33048/SIBJIM.2022.25.416 РИНЦ
Dates:
Submitted: Jul 5, 2022
Accepted: Sep 29, 2022
Published online: Mar 6, 2023
Published print: Jan 12, 2024
Identifiers:
Scopus: 2-s2.0-85150182026
Elibrary: 59097681
OpenAlex: W4323344562
Citing: Пока нет цитирований
Altmetrics: