Sciact
  • EN
  • RU

Uniform Convergence on Subspaces in the von Neumann Ergodic Theorem with Discrete Time Full article

Journal Mathematical Notes
ISSN: 0001-4346 , E-ISSN: 1573-8876
Output data Year: 2023, Volume: 113, Number: 5, Pages: 680–693 Pages count : 14 DOI: 10.1134/S0001434623050073
Tags von Neumann ergodic theorem , rate of convergence in ergodic theorems, power-law uniform convergence
Authors Kachurovskii A.G. 1 , Podvigin I.V. 1 , Khakimbaev A.Zh. 2
Affiliations
1 Sobolev Institute ofMathematics, Siberian Branch of Russian Academy of Sciences
2 Novosibirsk State University

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0004

Abstract: We consider the power-law uniform (in the operator norm) convergence on vector subspaces with their own norms in the von Neumann ergodic theorem with discrete time. All possible exponents of the considered power-law convergence are found; for each of these exponents, spectral criteria for such convergence are given and the complete description of all such subspaces is obtained. Uniform convergence on the whole space takes place only in the trivial cases, which explains the interest in uniform convergence precisely on subspaces. In addition, by the way, old estimates of the rates of convergence in the von Neumann ergodic theorem for measure-preserving mappings are generalized and refined.
Cite: Kachurovskii A.G. , Podvigin I.V. , Khakimbaev A.Z.
Uniform Convergence on Subspaces in the von Neumann Ergodic Theorem with Discrete Time
Mathematical Notes. 2023. V.113. N5. P.680–693. DOI: 10.1134/S0001434623050073 WOS Scopus РИНЦ OpenAlex
Original: Качуровский А.Г. , Подвигин И.В. , Хакимбаев А.Ж.
Равномерная сходимость на подпространствах в эргодической теореме фон Неймана с дискретным временем
Математические заметки. 2023. Т.113. №5. С.713–730. DOI: 10.4213/mzm13739 РИНЦ MathNet OpenAlex
Dates:
Submitted: Sep 26, 2022
Accepted: Dec 12, 2022
Published print: Jun 8, 2023
Published online: Jun 8, 2023
Identifiers:
Web of science: WOS:001016366900007
Scopus: 2-s2.0-85163150206
Elibrary: 61894013
OpenAlex: W4381331245
Citing:
DB Citing
Scopus 4
Web of science 2
OpenAlex 2
Elibrary 1
Altmetrics: