Sciact
  • EN
  • RU

A family of diameter perfect constant-weight codes from Steiner systems Научная публикация

Журнал Journal of Combinatorial Theory. Series A
ISSN: 0097-3165 , E-ISSN: 1096-0899
Вых. Данные Год: 2023, Том: 200, Номер статьи : 105790, Страниц : 20 DOI: 10.1016/j.jcta.2023.105790
Ключевые слова diameter perfect codes, anticodes, constant-weight codes, code--anticode bound, Steiner systems
Авторы Shi M. 1,2 , Xia Y. 1 , Krotov D.S. 3
Организации
1 School of Mathematical Sciences, Anhui University, Hefei 230601, China
2 State Key Laboratory of integrated Service Networks, Xidian University, Xian, 710071, China
3 Sobolev Institute of Mathematics, Novosibirsk 630090, Russia

Информация о финансировании (1)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0017

Реферат: If S is a transitive metric space, then |C|\cdot|A| \le |S| for any distance-$d code C and a set A, ``anticode'', of diameter less than d. For every Steiner S(t,k,n) system S, we show the existence of a q-ary constant-weight code C of length~n, weight~k (or n-k), and distance d=2k-t+1 (respectively, d=n-t+1) and an anticode A of diameter d-1 such that the pair (C,A) attains the code--anticode bound and the supports of the codewords of C are the blocks of S (respectively, the complements of the blocks of S). We study the problem of estimating the minimum value of q for which such a code exists, and find that minimum for small values of t.
Библиографическая ссылка: Shi M. , Xia Y. , Krotov D.S.
A family of diameter perfect constant-weight codes from Steiner systems
Journal of Combinatorial Theory. Series A. 2023. V.200. 105790 :1-20. DOI: 10.1016/j.jcta.2023.105790 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 9 дек. 2022 г.
Принята к публикации: 28 июн. 2023 г.
Опубликована в печати: 31 июл. 2023 г.
Опубликована online: 31 июл. 2023 г.
Идентификаторы БД:
Web of science: WOS:001155116300001
Scopus: 2-s2.0-85169559729
РИНЦ: 62914496
OpenAlex: W4385438484
Цитирование в БД:
БД Цитирований
OpenAlex 3
Scopus 1
Web of science 1
РИНЦ 3
Альметрики: