Sciact
  • EN
  • RU

Holder continuity of the traces of Sobolev functions to hypersurfaces in Carnot groups and the P-differentiability of Sobolev mappings Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2023, Volume: 64, Number: 4, Pages: 819-835 Pages count : 20 DOI: 10.1134/S0037446623040043
Tags Sobolev spaces, quasiconformal analysis, Carnot group
Authors Basalaev S.G. 1 , Vodopyanov S.K. 1
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russia

Funding (1)

1 Министерство науки и высшего образования РФ
Mathematical Center in Akademgorodok
075-15-2019-1613, 075-15-2022-281

Abstract: We study the behavior of Sobolev functions and mappings on the Carnot groups with the left invariant sub-Riemannian metric. We obtain some sufficient conditions for a Sobolev function to be locally H¨older continuous (in the Carnot–Carath´eodory metric) on almost every hypersurface of a given foliation. As an application of these results we show that a quasimonotone contact mapping of class W^1,_ν of Carnot groups is continuous, P-differentiable almost everywhere, and has the N-Luzin property.
Cite: Basalaev S.G. , Vodopyanov S.K.
Holder continuity of the traces of Sobolev functions to hypersurfaces in Carnot groups and the P-differentiability of Sobolev mappings
Siberian Mathematical Journal. 2023. V.64. N4. P.819-835. DOI: 10.1134/S0037446623040043 WOS Scopus РИНЦ OpenAlex
Original: Басалаев С.Г. , Водопьянов С.К.
Непрерывность по Гёльдеру следов функций класса Соболева на гиперповерхностях групп Карно и P-дифференцируемость соболевских отображений
Сибирский математический журнал. 2023. Т.64. №4. С.700-719. DOI: 10.33048/smzh.2023.64.404 РИНЦ
Dates:
Submitted: Apr 14, 2023
Accepted: May 16, 2023
Published print: Jul 21, 2023
Published online: Jul 21, 2023
Identifiers:
Web of science: WOS:001035552800004
Scopus: 2-s2.0-85165598996
Elibrary: 62232956
OpenAlex: W4385191934
Citing:
DB Citing
Scopus 4
OpenAlex 4
Web of science 2
Elibrary 2
Altmetrics: