Sciact
  • EN
  • RU

On the Rational Integrals of Two-Dimensional Natural Systems Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2023, Volume: 64, Number: 4, Pages: 787-795 Pages count : 9 DOI: 10.1134/s0037446623040018
Tags natural system, potential, first integral rational in momenta, Hopf equation
Authors Agapov S.V. 1,2 , Tursunov M.M. 2
Affiliations
1 Sobolev Institute of Mathematics
2 Novosibirsk State University

Funding (1)

1 Russian Science Foundation 19-11-00044

Abstract: We study a natural mechanical system having an additional first integral in the form of a function rational in momenta. One of the authors has proved recently that if the configuration space of the system is the two-dimensional torus; then, provided that the potential is analytic, the existence of a rational integral with analytic periodic coefficients and small degrees of the numerator and denominator implies the existence of an integral linear in momenta. In the present article, this result is generalized to the case that the configuration space of the system is the two-dimensional plane
Cite: Agapov S.V. , Tursunov M.M.
On the Rational Integrals of Two-Dimensional Natural Systems
Siberian Mathematical Journal. 2023. V.64. N4. P.787-795. DOI: 10.1134/s0037446623040018 WOS Scopus РИНЦ OpenAlex
Original: Агапов С.В. , Турсунов М.М.У.
О рациональных интегралах двумерных натуральных систем
Сибирский математический журнал. 2023. Т.64. №4. С.665-674. DOI: 10.33048/smzh.2023.64.401 РИНЦ
Dates:
Submitted: Mar 26, 2023
Accepted: Apr 6, 2023
Published print: Jul 24, 2023
Published online: Jul 24, 2023
Identifiers:
Web of science: WOS:001035552800001
Scopus: 2-s2.0-85165587047
Elibrary: 62356295
OpenAlex: W4385192291
Citing: Пока нет цитирований
Altmetrics: