To the Segal Chronometric Theory Full article
Journal |
Siberian Advances in Mathematics
ISSN: 1055-1344 , E-ISSN: 1934-8126 |
||
---|---|---|---|
Output data | Year: 2023, Volume: 33, Number: 3, Pages: 165--180 Pages count : 16 DOI: 10.1134/S105513442303001X | ||
Tags | Cayley transform, conformal group, conformal infinity, nonexceptional matrix, Pauli matrices, scale-extended Poincare group | ||
Authors |
|
||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | FWNF-2022-0006 |
Abstract:
The author expounds or proves some results connected with Segal's chronometric theory. He gives short proofs of results about linear representstion of the group of nondegenerate complex (2x2)-matrices on the Minkowski space-time and on the universal covering of the Lie group of unitary (2x2)-matrices, i.e. on the Einstein Universe, as well as about the Cayley transform of Lie algebras of Lie groups of unitary matrices into these groups. In comparison with the structure of conformal infinity for the Minkowski space, the structure of the set of unitary (2x2)-matrices, which do not admit the Caylet transform, is found. Some problems are suggested.
Cite:
Berestovskii V.N.
To the Segal Chronometric Theory
Siberian Advances in Mathematics. 2023. V.33. N3. P.165--180. DOI: 10.1134/S105513442303001X Scopus РИНЦ OpenAlex
To the Segal Chronometric Theory
Siberian Advances in Mathematics. 2023. V.33. N3. P.165--180. DOI: 10.1134/S105513442303001X Scopus РИНЦ OpenAlex
Original:
Берестовский В.Н.
К хронометрической теории Сигала
Математические труды. 2023. Т.26. №1. С.3-25. DOI: 10.33048/mattrudy.2023.26.101 РИНЦ
К хронометрической теории Сигала
Математические труды. 2023. Т.26. №1. С.3-25. DOI: 10.33048/mattrudy.2023.26.101 РИНЦ
Dates:
Submitted: | Jan 20, 2023 |
Accepted: | May 17, 2023 |
Published print: | Sep 1, 2023 |
Published online: | Sep 1, 2023 |
Identifiers:
Scopus: | 2-s2.0-85169677410 |
Elibrary: | 62863550 |
OpenAlex: | W4386367650 |
Citing:
DB | Citing |
---|---|
Scopus | 1 |