Sciact
  • EN
  • RU

To the Segal Chronometric Theory Full article

Journal Siberian Advances in Mathematics
ISSN: 1055-1344 , E-ISSN: 1934-8126
Output data Year: 2023, Volume: 33, Number: 3, Pages: 165--180 Pages count : 16 DOI: 10.1134/S105513442303001X
Tags Cayley transform, conformal group, conformal infinity, nonexceptional matrix, Pauli matrices, scale-extended Poincare group
Authors Berestovskii V.N. 1
Affiliations
1 Sobolev Institute of Mathematics

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0006

Abstract: The author expounds or proves some results connected with Segal's chronometric theory. He gives short proofs of results about linear representstion of the group of nondegenerate complex (2x2)-matrices on the Minkowski space-time and on the universal covering of the Lie group of unitary (2x2)-matrices, i.e. on the Einstein Universe, as well as about the Cayley transform of Lie algebras of Lie groups of unitary matrices into these groups. In comparison with the structure of conformal infinity for the Minkowski space, the structure of the set of unitary (2x2)-matrices, which do not admit the Caylet transform, is found. Some problems are suggested.
Cite: Berestovskii V.N.
To the Segal Chronometric Theory
Siberian Advances in Mathematics. 2023. V.33. N3. P.165--180. DOI: 10.1134/S105513442303001X Scopus РИНЦ OpenAlex
Original: Берестовский В.Н.
К хронометрической теории Сигала
Математические труды. 2023. Т.26. №1. С.3-25. DOI: 10.33048/mattrudy.2023.26.101 РИНЦ
Dates:
Submitted: Jan 20, 2023
Accepted: May 17, 2023
Published print: Sep 1, 2023
Published online: Sep 1, 2023
Identifiers:
Scopus: 2-s2.0-85169677410
Elibrary: 62863550
OpenAlex: W4386367650
Citing:
DB Citing
Scopus 1
Altmetrics: