On Location of the Matrix Spectrum with Respect to a Parabola Full article
Journal |
Siberian Advances in Mathematics
ISSN: 1055-1344 , E-ISSN: 1934-8126 |
||||
---|---|---|---|---|---|
Output data | Year: 2023, Volume: 33, Number: 3, Pages: 190-199 Pages count : 10 DOI: 10.1134/s1055134423030033 | ||||
Tags | generalized Lyapunov equations, Krein’s theorem, location ofthe matrix spectrum, theorem on dichotomy | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | FWNF-2022-0008 |
Abstract:
In the present article, we consider the problem on location of the matrix spectrum with respect to a parabola. In terms of solvability of a matrix Lyapunov type equation, we prove theorems on location of the matrix spectrum in certain domains Pi (bounded by a parabola) and Pe (lying outside the closure of Pi). A solution to the matrix equation is constructed. We use this equation and prove an analog of the Lyapunov–Krein theorem on dichotomy of the matrix spectrum with respect to a parabola.
Cite:
Demidenko G.V.
, Prokhorov V.S.
On Location of the Matrix Spectrum with Respect to a Parabola
Siberian Advances in Mathematics. 2023. V.33. N3. P.190-199. DOI: 10.1134/s1055134423030033 Scopus РИНЦ OpenAlex
On Location of the Matrix Spectrum with Respect to a Parabola
Siberian Advances in Mathematics. 2023. V.33. N3. P.190-199. DOI: 10.1134/s1055134423030033 Scopus РИНЦ OpenAlex
Original:
Демиденко Г.В.
, Прохоров В.С.
О расположении матричного спектра относительно параболы
Математические труды. 2023. Т.26. №1. С.26-40. DOI: 10.33048/mattrudy.2023.26.102 РИНЦ
О расположении матричного спектра относительно параболы
Математические труды. 2023. Т.26. №1. С.26-40. DOI: 10.33048/mattrudy.2023.26.102 РИНЦ
Dates:
Submitted: | May 26, 2023 |
Accepted: | Jun 16, 2023 |
Published print: | Sep 1, 2023 |
Published online: | Sep 1, 2023 |
Identifiers:
Scopus: | 2-s2.0-85169662264 |
Elibrary: | 62771894 |
OpenAlex: | W4386367715 |