Sciact
  • EN
  • RU

On Location of the Matrix Spectrum with Respect to a Parabola Full article

Journal Siberian Advances in Mathematics
ISSN: 1055-1344 , E-ISSN: 1934-8126
Output data Year: 2023, Volume: 33, Number: 3, Pages: 190-199 Pages count : 10 DOI: 10.1134/s1055134423030033
Tags generalized Lyapunov equations, Krein’s theorem, location ofthe matrix spectrum, theorem on dichotomy
Authors Demidenko G.V. 1,2 , Prokhorov V.S. 1
Affiliations
1 Novosibirsk State University, Novosibirsk, Russia
2 Sobolev Institute of Mathematics, Novosibirsk, Russia

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0008

Abstract: In the present article, we consider the problem on location of the matrix spectrum with respect to a parabola. In terms of solvability of a matrix Lyapunov type equation, we prove theorems on location of the matrix spectrum in certain domains Pi (bounded by a parabola) and Pe (lying outside the closure of Pi). A solution to the matrix equation is constructed. We use this equation and prove an analog of the Lyapunov–Krein theorem on dichotomy of the matrix spectrum with respect to a parabola.
Cite: Demidenko G.V. , Prokhorov V.S.
On Location of the Matrix Spectrum with Respect to a Parabola
Siberian Advances in Mathematics. 2023. V.33. N3. P.190-199. DOI: 10.1134/s1055134423030033 Scopus РИНЦ OpenAlex
Original: Демиденко Г.В. , Прохоров В.С.
О расположении матричного спектра относительно параболы
Математические труды. 2023. Т.26. №1. С.26-40. DOI: 10.33048/mattrudy.2023.26.102 РИНЦ
Dates:
Submitted: May 26, 2023
Accepted: Jun 16, 2023
Published print: Sep 1, 2023
Published online: Sep 1, 2023
Identifiers:
Scopus: 2-s2.0-85169662264
Elibrary: 62771894
OpenAlex: W4386367715
Citing:
DB Citing
OpenAlex 3
Scopus 2
Elibrary 4
Altmetrics: