Dual coalgebras of jacobian N-Lie algebras over polynomial rings Full article
Journal |
Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260 |
||
---|---|---|---|
Output data | Year: 2023, Volume: 64, Number: 5, Pages: 1153–1166 Pages count : 14 DOI: 10.1134/S0037446623050087 | ||
Tags | coalgebra, Poisson bracket, Filippov algebra, Jacobian | ||
Authors |
|
||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | FWNF-2022-0002 |
Abstract:
We establish the structure of the dual Lie coalgebra for a Lie algebra of the symplectic Poisson bracket (Jacobian-type Poisson bracket) on the algebra of polynomials in evenly many variables. We show that if the base field has characteristic zero then the n-ary dual coalgebra for the Jacobian n-Lie algebra consists of the same linear functionals as the dual coalgebra for the commutative polynomial algebra.
Cite:
Zhelyabin V.N.
, Kolesnikov P.S.
Dual coalgebras of jacobian N-Lie algebras over polynomial rings
Siberian Mathematical Journal. 2023. V.64. N5. P.1153–1166. DOI: 10.1134/S0037446623050087 WOS Scopus РИНЦ OpenAlex
Dual coalgebras of jacobian N-Lie algebras over polynomial rings
Siberian Mathematical Journal. 2023. V.64. N5. P.1153–1166. DOI: 10.1134/S0037446623050087 WOS Scopus РИНЦ OpenAlex
Original:
Желябин В.Н.
, Колесников П.С.
Дуальные коалгебры n-лиевых алгебр якобиана колец многочленов
Сибирский математический журнал. 2023. Т.64. №5. С.992-1008. DOI: 10.33048/smzh.2023.64.508 РИНЦ
Дуальные коалгебры n-лиевых алгебр якобиана колец многочленов
Сибирский математический журнал. 2023. Т.64. №5. С.992-1008. DOI: 10.33048/smzh.2023.64.508 РИНЦ
Dates:
Submitted: | Apr 10, 2023 |
Accepted: | May 16, 2023 |
Published print: | Sep 26, 2023 |
Published online: | Sep 26, 2023 |
Identifiers:
Web of science: | WOS:001075048700008 |
Scopus: | 2-s2.0-85172384465 |
Elibrary: | 63269225 |
OpenAlex: | W4387063240 |
Citing:
Пока нет цитирований