Sciact
  • EN
  • RU

Dual coalgebras of jacobian N-Lie algebras over polynomial rings Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2023, Volume: 64, Number: 5, Pages: 1153–1166 Pages count : 14 DOI: 10.1134/S0037446623050087
Tags coalgebra, Poisson bracket, Filippov algebra, Jacobian
Authors Zhelyabin V.N. 1 , Kolesnikov P.S. 1
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russia

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0002

Abstract: We establish the structure of the dual Lie coalgebra for a Lie algebra of the symplectic Poisson bracket (Jacobian-type Poisson bracket) on the algebra of polynomials in evenly many variables. We show that if the base field has characteristic zero then the n-ary dual coalgebra for the Jacobian n-Lie algebra consists of the same linear functionals as the dual coalgebra for the commutative polynomial algebra.
Cite: Zhelyabin V.N. , Kolesnikov P.S.
Dual coalgebras of jacobian N-Lie algebras over polynomial rings
Siberian Mathematical Journal. 2023. V.64. N5. P.1153–1166. DOI: 10.1134/S0037446623050087 WOS Scopus РИНЦ OpenAlex
Original: Желябин В.Н. , Колесников П.С.
Дуальные коалгебры n-лиевых алгебр якобиана колец многочленов
Сибирский математический журнал. 2023. Т.64. №5. С.992-1008. DOI: 10.33048/smzh.2023.64.508 РИНЦ
Dates:
Submitted: Apr 10, 2023
Accepted: May 16, 2023
Published print: Sep 26, 2023
Published online: Sep 26, 2023
Identifiers:
Web of science: WOS:001075048700008
Scopus: 2-s2.0-85172384465
Elibrary: 63269225
OpenAlex: W4387063240
Citing: Пока нет цитирований
Altmetrics: