Dual coalgebras of jacobian N-Lie algebras over polynomial rings Full article
| Journal |
Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260 |
||
|---|---|---|---|
| Output data | Year: 2023, Volume: 64, Number: 5, Pages: 1153–1166 Pages count : 14 DOI: 10.1134/S0037446623050087 | ||
| Tags | coalgebra, Poisson bracket, Filippov algebra, Jacobian | ||
| Authors |
|
||
| Affiliations |
|
Funding (1)
| 1 | Sobolev Institute of Mathematics | FWNF-2022-0002 |
Abstract:
We establish the structure of the dual Lie coalgebra for a Lie algebra of the symplectic Poisson bracket (Jacobian-type Poisson bracket) on the algebra of polynomials in evenly many variables. We show that if the base field has characteristic zero then the n-ary dual coalgebra for the Jacobian n-Lie algebra consists of the same linear functionals as the dual coalgebra for the commutative polynomial algebra.
Cite:
Zhelyabin V.N.
, Kolesnikov P.S.
Dual coalgebras of jacobian N-Lie algebras over polynomial rings
Siberian Mathematical Journal. 2023. V.64. N5. P.1153–1166. DOI: 10.1134/S0037446623050087 WOS Scopus РИНЦ OpenAlex
Dual coalgebras of jacobian N-Lie algebras over polynomial rings
Siberian Mathematical Journal. 2023. V.64. N5. P.1153–1166. DOI: 10.1134/S0037446623050087 WOS Scopus РИНЦ OpenAlex
Original:
Желябин В.Н.
, Колесников П.С.
Дуальные коалгебры n-лиевых алгебр якобиана колец многочленов
Сибирский математический журнал. 2023. Т.64. №5. С.992-1008. DOI: 10.33048/smzh.2023.64.508 РИНЦ
Дуальные коалгебры n-лиевых алгебр якобиана колец многочленов
Сибирский математический журнал. 2023. Т.64. №5. С.992-1008. DOI: 10.33048/smzh.2023.64.508 РИНЦ
Dates:
| Submitted: | Apr 10, 2023 |
| Accepted: | May 16, 2023 |
| Published print: | Sep 26, 2023 |
| Published online: | Sep 26, 2023 |
Identifiers:
| Web of science: | WOS:001075048700008 |
| Scopus: | 2-s2.0-85172384465 |
| Elibrary: | 63269225 |
| OpenAlex: | W4387063240 |
Citing:
Пока нет цитирований