Continuity of the mappings with finite distortion of the Sobolev class W1 ν,loc on carnot groups Full article
Journal |
Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260 |
||
---|---|---|---|
Output data | Year: 2023, Volume: 64, Number: 5, Pages: 1091–1109 Pages count : 19 DOI: 10.1134/S0037446623050038 | ||
Tags | mapping with finite and bounded distortion, quasiconformal analysis, Sobolev space, Carnot group | ||
Authors |
|
||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | FWNF-2022-0006 |
Abstract:
We prove the continuity of the mappings with finite distortion of the Sobolev class W1 ν,loc on Carnot groups and establish that these mappings are P-differentiable almost everywhere and have the Luzin N-property
Cite:
Vodopyanov S.K.
Continuity of the mappings with finite distortion of the Sobolev class W1 ν,loc on carnot groups
Siberian Mathematical Journal. 2023. V.64. N5. P.1091–1109. DOI: 10.1134/S0037446623050038 WOS Scopus РИНЦ OpenAlex
Continuity of the mappings with finite distortion of the Sobolev class W1 ν,loc on carnot groups
Siberian Mathematical Journal. 2023. V.64. N5. P.1091–1109. DOI: 10.1134/S0037446623050038 WOS Scopus РИНЦ OpenAlex
Original:
Водопьянов С.К.
Непрерывность отображений класса Соболева W1v_loc с конечным искажением на группах Карно
Сибирский математический журнал. 2023. Т.64. №5. С.912–934. DOI: 10.33048/smzh.2023.64.503 РИНЦ
Непрерывность отображений класса Соболева W1v_loc с конечным искажением на группах Карно
Сибирский математический журнал. 2023. Т.64. №5. С.912–934. DOI: 10.33048/smzh.2023.64.503 РИНЦ
Dates:
Submitted: | May 12, 2023 |
Accepted: | Aug 2, 2023 |
Published print: | Sep 26, 2023 |
Published online: | Sep 29, 2023 |
Identifiers:
Web of science: | WOS:001075048700003 |
Scopus: | 2-s2.0-85174736764 |
Elibrary: | 63309081 |
OpenAlex: | W4387063210 |