Sciact
  • EN
  • RU

Locally convex spaces with all Archimedean cones closed Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2023, Volume: 64, Number: 5, Pages: 1117–1136 Pages count : 20 DOI: 10.1134/S0037446623050051
Tags Archimedean ordered vector space, locally convex space, weak topology, cone, wedge
Authors Gutman A.E. 1,2 , Emelianenkov I.A. 1
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russia
2 Novosibirsk State University, Novosibirsk, Russia

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0004

Abstract: We provide an exhaustive description of the class of locally convex spaces in which all Archimedean cones are closed. We introduce the notion of quasidense set and prove that the above class consists of all finite-dimensional and countable-dimensional spaces X whose topological dual X is quasidense in the algebraic dual X# of X
Cite: Gutman A.E. , Emelianenkov I.A.
Locally convex spaces with all Archimedean cones closed
Siberian Mathematical Journal. 2023. V.64. N5. P.1117–1136. DOI: 10.1134/S0037446623050051 WOS Scopus РИНЦ OpenAlex
Original: Гутман А.Е. , Емельяненков И.А.
Локально выпуклые пространства, в которых все архимедовы конусы замкнуты
Сибирский математический журнал. 2023. Т.64. №5. С.945-970. DOI: 10.33048/smzh.2023.64.505 РИНЦ
Dates:
Submitted: May 3, 2023
Accepted: May 3, 2023
Published print: Sep 26, 2023
Published online: Sep 26, 2023
Identifiers:
Web of science: WOS:001075048700005
Scopus: 2-s2.0-85172335601
Elibrary: 63065017
OpenAlex: W4387063317
Citing:
DB Citing
OpenAlex 1
Scopus 1
Web of science 1
Elibrary 1
Altmetrics: