Locally convex spaces with all Archimedean cones closed Full article
Journal |
Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260 |
||||
---|---|---|---|---|---|
Output data | Year: 2023, Volume: 64, Number: 5, Pages: 1117–1136 Pages count : 20 DOI: 10.1134/S0037446623050051 | ||||
Tags | Archimedean ordered vector space, locally convex space, weak topology, cone, wedge | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | FWNF-2022-0004 |
Abstract:
We provide an exhaustive description of the class of locally convex spaces in which all Archimedean cones are closed. We introduce the notion of quasidense set and prove that the above class consists of all finite-dimensional and countable-dimensional spaces X whose topological dual X is quasidense in the algebraic dual X# of X
Cite:
Gutman A.E.
, Emelianenkov I.A.
Locally convex spaces with all Archimedean cones closed
Siberian Mathematical Journal. 2023. V.64. N5. P.1117–1136. DOI: 10.1134/S0037446623050051 WOS Scopus РИНЦ OpenAlex
Locally convex spaces with all Archimedean cones closed
Siberian Mathematical Journal. 2023. V.64. N5. P.1117–1136. DOI: 10.1134/S0037446623050051 WOS Scopus РИНЦ OpenAlex
Original:
Гутман А.Е.
, Емельяненков И.А.
Локально выпуклые пространства, в которых все архимедовы конусы замкнуты
Сибирский математический журнал. 2023. Т.64. №5. С.945-970. DOI: 10.33048/smzh.2023.64.505 РИНЦ
Локально выпуклые пространства, в которых все архимедовы конусы замкнуты
Сибирский математический журнал. 2023. Т.64. №5. С.945-970. DOI: 10.33048/smzh.2023.64.505 РИНЦ
Dates:
Submitted: | May 3, 2023 |
Accepted: | May 3, 2023 |
Published print: | Sep 26, 2023 |
Published online: | Sep 26, 2023 |
Identifiers:
Web of science: | WOS:001075048700005 |
Scopus: | 2-s2.0-85172335601 |
Elibrary: | 63065017 |
OpenAlex: | W4387063317 |