Sciact
  • EN
  • RU

A uniqueness result for the inverse problem of identifying boundaries from weighted Radon transform Научная публикация

Журнал Journal of Inverse and Ill-Posed Problems
ISSN: 0928-0219 , E-ISSN: 1569-3945
Вых. Данные Год: 2023, Том: 31, Номер: 6, Страницы: 959-965 Страниц : 7 DOI: 10.1515/jiip-2023-0038
Ключевые слова Weighted Radon transform; integral geometry; probing; tomography; differential equation; discontinuous functions
Авторы Anikonov D.S. 1 , Kazantsev S.G. 1 , Konovalova D.S. 1
Организации
1 Sobolev Institute of Mathematics , Novosibirsk , Russia

Информация о финансировании (1)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0009

Реферат: We study the problem of the integral geometry, in which the functions are integrated over hyperplanes in the n-dimensional Euclidean space, n = 2m + 1. The integrand is the product of a function of n variables called the density and weight function depending on 2n variables. Such an integration is called here the weighted Radon transform, which coincides with the classical one if the weight function is equal to one. It is proved the uniqueness for the problem of determination of the surface on which the integrand is discontinuous.
Библиографическая ссылка: Anikonov D.S. , Kazantsev S.G. , Konovalova D.S.
A uniqueness result for the inverse problem of identifying boundaries from weighted Radon transform
Journal of Inverse and Ill-Posed Problems. 2023. V.31. N6. P.959-965. DOI: 10.1515/jiip-2023-0038 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 24 апр. 2023 г.
Принята к публикации: 29 июл. 2023 г.
Опубликована в печати: 4 окт. 2023 г.
Опубликована online: 4 окт. 2023 г.
Идентификаторы БД:
Web of science: WOS:001079744100001
Scopus: 2-s2.0-85173788825
РИНЦ: 64773773
OpenAlex: W4387305297
Цитирование в БД:
БД Цитирований
OpenAlex 3
Scopus 3
Web of science 1
РИНЦ 3
Альметрики: