Sharp Estimates for Geometric Rigidity of Isometries on the First Heisenberg Group Full article
Journal |
Doklady Mathematics
ISSN: 1064-5624 , E-ISSN: 1531-8362 |
||
---|---|---|---|
Output data | Year: 2019, Volume: 100, Pages: 480–484 Pages count : DOI: 10.1134/S1064562419050235 | ||
Authors |
|
||
Affiliations |
|
Abstract:
We prove the quantitative stability of isometries on the first Heisenberg group with sub-Riemannian geometry: every (1+e)-quasi-isometry of the John domain of the Heisenberg group H is close to some isometry with the order of closeness e^{1/2}+e
in the uniform norm and with the order of closeness e in the Sobolev norm. An example demonstrating the asymptotic sharpness of the results is given.
Cite:
Isangulova D.V.
Sharp Estimates for Geometric Rigidity of Isometries on the First Heisenberg Group
Doklady Mathematics. 2019. V.100. P.480–484. DOI: 10.1134/S1064562419050235 WOS Scopus РИНЦ OpenAlex
Sharp Estimates for Geometric Rigidity of Isometries on the First Heisenberg Group
Doklady Mathematics. 2019. V.100. P.480–484. DOI: 10.1134/S1064562419050235 WOS Scopus РИНЦ OpenAlex
Original:
Исангулова Д.В.
Точные оценки геометрической жёсткости изометрий на первой группе Гейзенберга
Доклады академии наук. 2019. Т.488. №6. С.590-594. DOI: 10.31857/s0869-56524886590-594 РИНЦ OpenAlex
Точные оценки геометрической жёсткости изометрий на первой группе Гейзенберга
Доклады академии наук. 2019. Т.488. №6. С.590-594. DOI: 10.31857/s0869-56524886590-594 РИНЦ OpenAlex
Dates:
Submitted: | Jun 17, 2019 |
Published print: | Nov 15, 2019 |
Identifiers:
Web of science: | WOS:000496709100020 |
Scopus: | 2-s2.0-85075128974 |
Elibrary: | 41819236 |
OpenAlex: | W2985340397 |
Citing:
Пока нет цитирований