Sciact
  • EN
  • RU

Sharp Estimates for Geometric Rigidity of Isometries on the First Heisenberg Group Full article

Journal Doklady Mathematics
ISSN: 1064-5624 , E-ISSN: 1531-8362
Output data Year: 2019, Volume: 100, Pages: 480–484 Pages count : DOI: 10.1134/S1064562419050235
Authors Isangulova Darʹya Vasilʹevna 1
Affiliations
1 Novosibirsk State University

Abstract: We prove the quantitative stability of isometries on the first Heisenberg group with sub-Riemannian geometry: every (1+e)-quasi-isometry of the John domain of the Heisenberg group H is close to some isometry with the order of closeness e^{1/2}+e in the uniform norm and with the order of closeness e in the Sobolev norm. An example demonstrating the asymptotic sharpness of the results is given.
Cite: Isangulova D.V.
Sharp Estimates for Geometric Rigidity of Isometries on the First Heisenberg Group
Doklady Mathematics. 2019. V.100. P.480–484. DOI: 10.1134/S1064562419050235 WOS Scopus РИНЦ OpenAlex
Original: Исангулова Д.В.
Точные оценки геометрической жёсткости изометрий на первой группе Гейзенберга
Доклады академии наук. 2019. Т.488. №6. С.590-594. DOI: 10.31857/s0869-56524886590-594 РИНЦ OpenAlex
Dates:
Submitted: Jun 17, 2019
Published print: Nov 15, 2019
Identifiers:
Web of science: WOS:000496709100020
Scopus: 2-s2.0-85075128974
Elibrary: 41819236
OpenAlex: W2985340397
Citing: Пока нет цитирований
Altmetrics: