Estimates of solutions in a model of antiviral immune response Full article
Journal |
Siberian Advances in Mathematics
ISSN: 1055-1344 , E-ISSN: 1934-8126 |
||||
---|---|---|---|---|---|
Output data | Year: 2023, Volume: 33, Number: 4, Pages: 353-368 Pages count : 16 DOI: 10.1134/S1055134423040089 | ||||
Tags | antiviral immune response model, delay differential equations, asymptotic stability, estimates of solutions, attraction set, Lyapunov–Krasovski˘ı functional | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | FWNF-2022-0008 |
Abstract:
We consider a model of antiviral immune response suggested by G.I. Marchuk. The model is described by a system of differential equations with several delays. We study asymptotic stability for a stationary solution of the system that corresponds to a completely healthy organism. We estimate the attraction set of this stationary solution. We also find estimates of solutions characterizing the stabilization rate at infinity. A Lyapunov–Krasovski˘ı functional is used in the proof
Cite:
Skvortsova M.A.
Estimates of solutions in a model of antiviral immune response
Siberian Advances in Mathematics. 2023. V.33. N4. P.353-368. DOI: 10.1134/S1055134423040089 Scopus РИНЦ OpenAlex
Estimates of solutions in a model of antiviral immune response
Siberian Advances in Mathematics. 2023. V.33. N4. P.353-368. DOI: 10.1134/S1055134423040089 Scopus РИНЦ OpenAlex
Original:
Скворцова М.А.
Оценки решений в модели противовирусного иммунного ответа
Математические труды. 2023. Т.26. №1. С.150-175. DOI: 10.33048/mattrudy.2023.26.108 РИНЦ
Оценки решений в модели противовирусного иммунного ответа
Математические труды. 2023. Т.26. №1. С.150-175. DOI: 10.33048/mattrudy.2023.26.108 РИНЦ
Dates:
Submitted: | Apr 20, 2023 |
Accepted: | May 17, 2023 |
Published print: | Dec 14, 2023 |
Published online: | Dec 14, 2023 |
Identifiers:
Scopus: | 2-s2.0-85179722294 |
Elibrary: | 64285170 |
OpenAlex: | W4389736039 |
Citing:
Пока нет цитирований