Sciact
  • EN
  • RU

Estimates of solutions in a model of antiviral immune response Full article

Journal Siberian Advances in Mathematics
ISSN: 1055-1344 , E-ISSN: 1934-8126
Output data Year: 2023, Volume: 33, Number: 4, Pages: 353-368 Pages count : 16 DOI: 10.1134/S1055134423040089
Tags antiviral immune response model, delay differential equations, asymptotic stability, estimates of solutions, attraction set, Lyapunov–Krasovski˘ı functional
Authors Skvortsova M.A. 1,2
Affiliations
1 Sobolev Institute of Mathematics
2 Novosibirsk State University

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0008

Abstract: We consider a model of antiviral immune response suggested by G.I. Marchuk. The model is described by a system of differential equations with several delays. We study asymptotic stability for a stationary solution of the system that corresponds to a completely healthy organism. We estimate the attraction set of this stationary solution. We also find estimates of solutions characterizing the stabilization rate at infinity. A Lyapunov–Krasovski˘ı functional is used in the proof
Cite: Skvortsova M.A.
Estimates of solutions in a model of antiviral immune response
Siberian Advances in Mathematics. 2023. V.33. N4. P.353-368. DOI: 10.1134/S1055134423040089 Scopus РИНЦ OpenAlex
Original: Скворцова М.А.
Оценки решений в модели противовирусного иммунного ответа
Математические труды. 2023. Т.26. №1. С.150-175. DOI: 10.33048/mattrudy.2023.26.108 РИНЦ
Dates:
Submitted: Apr 20, 2023
Accepted: May 17, 2023
Published print: Dec 14, 2023
Published online: Dec 14, 2023
Identifiers:
Scopus: 2-s2.0-85179722294
Elibrary: 64285170
OpenAlex: W4389736039
Citing: Пока нет цитирований
Altmetrics: