Sciact
  • EN
  • RU

Finite Time Stabilization to Zero and Exponential Stability of Quasilinear Hyperbolic Systems Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2023, Volume: 64, Number: 6, Pages: 1354-1369 Pages count : 16 DOI: 10.1134/S0037446623060101
Tags first-order quasilinear hyperbolic system, smoothing boundary conditions, stabilization to zero in finite time, exponential stability
Authors Lyul`ko N.A. 1,2
Affiliations
1 Sobolev Institute of Mathematics
2 Novosibirsk State University

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0008

Abstract: We consider the asymptotic properties of solutions to the mixed problems for the quasilinear nonautonomous first-order hyperbolic systems with two variables in the case of smoothing boundary conditions. We prove that all smooth solutions to the problem for a decoupled hyperbolic system stabilize to zero in finite time independently of the initial data. If the hyperbolic system is coupled then we show that the zero solution to the quasilinear problem is exponentially stable.
Cite: Lyul`ko N.A.
Finite Time Stabilization to Zero and Exponential Stability of Quasilinear Hyperbolic Systems
Siberian Mathematical Journal. 2023. V.64. N6. P.1354-1369. DOI: 10.1134/S0037446623060101 WOS Scopus РИНЦ OpenAlex
Original: Люлько Н.А.
Стабилизация к нулю за конечное время и экспоненциальная устойчивость квазилинейных гиперболических систем
Сибирский математический журнал. 2023. Т.64. №6. С.1229-1247. DOI: 10.33048/smzh.2023.64.610 РИНЦ
Dates:
Submitted: Jun 20, 2023
Accepted: Sep 25, 2023
Published print: Nov 24, 2023
Published online: Nov 24, 2023
Identifiers:
Web of science: WOS:001120902100008
Scopus: 2-s2.0-85178929680
Elibrary: 64324426
OpenAlex: W4389379297
Citing: Пока нет цитирований
Altmetrics: