Sciact
  • EN
  • RU

On the existence of two affine-equivalent frameworks with prescribed edge lengths in Euclidean d-space Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2023, Volume: 64, Number: 6, Pages: 1273-1278 Pages count : 6 DOI: 10.1134/S0037446623060022
Tags Euclidean d-space, graph, bar-and-joint framework, affine-equivalent frameworks, Cayley-Menger determinant, Cauchy rigidity theorem
Authors Alexandrov V.A. 1,2
Affiliations
1 Sobolev Institute of Mathematics
2 Department of Physics, Novosibirsk State University

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0006

Abstract: We study the existence of the two affine-equivalent bar-and-joint frameworks in Euclidean d-space which have some prescribed combinatorial structure and edge lengths. We show that the existence problem is always solvable theoretically and explain why to propose a practical algorithm for solving the problem is impossible.
Cite: Alexandrov V.A.
On the existence of two affine-equivalent frameworks with prescribed edge lengths in Euclidean d-space
Siberian Mathematical Journal. 2023. V.64. N6. P.1273-1278. DOI: 10.1134/S0037446623060022 WOS Scopus РИНЦ OpenAlex
Original: Александров В.А.
О существовании двух аффинно-эквивалентных каркасов с заданными длинами ребер в евклидовом d-мерном пространстве
Сибирский математический журнал. 2023. Т.64. №6. С.1131-1137. DOI: 10.33048/smzh.2023.64.602 РИНЦ
Dates:
Submitted: Jun 27, 2023
Accepted: Sep 25, 2023
Published print: Nov 24, 2023
Published online: Nov 24, 2023
Identifiers:
Web of science: WOS:001120902100013
Scopus: 2-s2.0-85178873656
Elibrary: 64411887
OpenAlex: W4389379411
Citing: Пока нет цитирований
Altmetrics: