On the existence of two affine-equivalent frameworks with prescribed edge lengths in Euclidean d-space Full article
Journal |
Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260 |
||||
---|---|---|---|---|---|
Output data | Year: 2023, Volume: 64, Number: 6, Pages: 1273-1278 Pages count : 6 DOI: 10.1134/S0037446623060022 | ||||
Tags | Euclidean d-space, graph, bar-and-joint framework, affine-equivalent frameworks, Cayley-Menger determinant, Cauchy rigidity theorem | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | FWNF-2022-0006 |
Abstract:
We study the existence of the two affine-equivalent bar-and-joint frameworks in Euclidean d-space which have some prescribed combinatorial structure and edge lengths. We show that the existence problem is always solvable theoretically and explain why to propose a practical algorithm for solving the problem is impossible.
Cite:
Alexandrov V.A.
On the existence of two affine-equivalent frameworks with prescribed edge lengths in Euclidean d-space
Siberian Mathematical Journal. 2023. V.64. N6. P.1273-1278. DOI: 10.1134/S0037446623060022 WOS Scopus РИНЦ OpenAlex
On the existence of two affine-equivalent frameworks with prescribed edge lengths in Euclidean d-space
Siberian Mathematical Journal. 2023. V.64. N6. P.1273-1278. DOI: 10.1134/S0037446623060022 WOS Scopus РИНЦ OpenAlex
Original:
Александров В.А.
О существовании двух аффинно-эквивалентных каркасов с заданными длинами ребер в евклидовом d-мерном пространстве
Сибирский математический журнал. 2023. Т.64. №6. С.1131-1137. DOI: 10.33048/smzh.2023.64.602 РИНЦ
О существовании двух аффинно-эквивалентных каркасов с заданными длинами ребер в евклидовом d-мерном пространстве
Сибирский математический журнал. 2023. Т.64. №6. С.1131-1137. DOI: 10.33048/smzh.2023.64.602 РИНЦ
Dates:
Submitted: | Jun 27, 2023 |
Accepted: | Sep 25, 2023 |
Published print: | Nov 24, 2023 |
Published online: | Nov 24, 2023 |
Identifiers:
Web of science: | WOS:001120902100013 |
Scopus: | 2-s2.0-85178873656 |
Elibrary: | 64411887 |
OpenAlex: | W4389379411 |
Citing:
Пока нет цитирований