Classes of Noncontact Mappings of Carnot Groups and Metric Properties Full article
Journal |
Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260 |
||
---|---|---|---|
Output data | Year: 2023, Volume: 64, Number: 6, Pages: 1330-1350 Pages count : 21 DOI: 10.1134/S0037446623060083 | ||
Authors |
|
||
Affiliations |
|
Funding (1)
1 |
Министерство науки и высшего образования РФ Mathematical Center in Akademgorodok |
075-15-2019-1613, 075-15-2022-281 |
Abstract:
We study the metric properties of level surfaces for classes of smooth noncontact mappings
from arbitrary Carnot groups into two-step ones with some constraints on the dimensions of horizontal
subbundles and the subbundles corresponding to degree 2 fields. We calculate the Hausdorff dimension
of the level surfaces with respect to the sub-Riemannian quasimetric and derive an analytical relation
between the Hausdorff measures for the sub-Riemannian quasimetric and the Riemannian metric.
As application, we establish a new form of coarea formula, also proving that the new coarea factor is
well defined.
Cite:
Karmanova M.B.
Classes of Noncontact Mappings of Carnot Groups and Metric Properties
Siberian Mathematical Journal. 2023. V.64. N6. P.1330-1350. DOI: 10.1134/S0037446623060083 WOS Scopus РИНЦ OpenAlex
Classes of Noncontact Mappings of Carnot Groups and Metric Properties
Siberian Mathematical Journal. 2023. V.64. N6. P.1330-1350. DOI: 10.1134/S0037446623060083 WOS Scopus РИНЦ OpenAlex
Original:
Карманова М.Б.
Классы неконтактных отображений групп Карно и метрические свойства
Сибирский математический журнал. 2023. Т.64. №6. С.1199-1223. DOI: 10.33048/smzh.2023.64.608 РИНЦ
Классы неконтактных отображений групп Карно и метрические свойства
Сибирский математический журнал. 2023. Т.64. №6. С.1199-1223. DOI: 10.33048/smzh.2023.64.608 РИНЦ
Dates:
Published online: | Nov 24, 2023 |
Identifiers:
Web of science: | WOS:001120902100001 |
Scopus: | 2-s2.0-85178939062 |
Elibrary: | 64523909 |
OpenAlex: | W4389379234 |
Citing:
Пока нет цитирований