Sciact
  • EN
  • RU

Toward a Sharp Baer-Suzuki Theorem for the π-Radical: Exeptional Groups of Small Rank Full article

Journal Algebra and Logic
ISSN: 0002-5232 , E-ISSN: 1573-8302
Output data Year: 2023, Volume: 62, Number: 1, Pages: 1-21 Pages count : 21 DOI: 10.1007/s10469-023-09720-3
Tags exceptional groups of Lie type, groups 2B2(q), 2G2(q), G2(q), 3D4(q), π-radical of group, Baer–Suzuki π-theorem
Authors Wang Zh. 1 , Guo W. 1 , Revin D.O. 2
Affiliations
1 School of Science, Hainan University
2 Sobolev Institute of Mathematics

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0002

Abstract: Let π be a proper subset of the set of all prime numbers. Denote by r the least prime number not in π, and put m = r, if r = 2, 3, and m = r − 1 if r ≥ 5. We look at the conjecture that a conjugacy class D in a finite group G generates a π-subgroup in G (or, equivalently, is contained in the π-radical) iff any m elements from D generate a π-group. Previously, this conjecture was confirmed for finite groups whose every non-Abelian composition factor is isomorphic to a sporadic, alternating, linear or unitary simple group. Now it is confirmed for groups the list of composition factors of which is added up by exceptional groups of Lie type 2B2(q), 2G2(q), G2(q), and 3D4(q)
Cite: Wang Z. , Guo W. , Revin D.O.
Toward a Sharp Baer-Suzuki Theorem for the π-Radical: Exeptional Groups of Small Rank
Algebra and Logic. 2023. V.62. N1. P.1-21. DOI: 10.1007/s10469-023-09720-3 WOS Scopus РИНЦ OpenAlex
Original: Ван Ч. , Го В. , Ревин Д.О.
К точной теореме Бэра–Судзуки для π-радикала: исключительные группы малого ранга
Алгебра и логика. 2023. Т.62. №1. С.3-32. DOI: 10.33048/alglog.2023.62.101 РИНЦ
Dates:
Submitted: Dec 16, 2022
Published print: Mar 23, 2023
Accepted: Oct 30, 2023
Published online: Jan 4, 2024
Identifiers:
Web of science: WOS:001139076400005
Scopus: 2-s2.0-85181500697
Elibrary: 65519032
OpenAlex: W4390585137
Citing:
DB Citing
OpenAlex 1
Scopus 2
Web of science 2
Elibrary 2
Altmetrics: