Generic Types and Generic Elements in Divisible Rigid Groups Научная публикация
Журнал |
Algebra and Logic
ISSN: 0002-5232 , E-ISSN: 1573-8302 |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2023, Том: 62, Номер: 1, Страницы: 72-79 Страниц : 8 DOI: 10.1007/s10469-023-09726-x | ||||
Ключевые слова | divisible m-rigid group, generic type, generic element | ||||
Авторы |
|
||||
Организации |
|
Информация о финансировании (1)
1 | Институт математики им. С.Л. Соболева СО РАН | FWNF-2022-0002 |
Реферат:
A group G is said to be m-rigid if it contains a normal series of the form G = G1 > G2 >...>Gm >Gm+1 =1, whose quotients Gi/Gi+1 are Abelian and, treated as (right) Z[G/Gi]-modules, are torsion-free. A rigid group G is said to be divisible if elements of the quotient ρi(G)/ρi+1(G) are divisible by nonzero elements of the ring Z[G/ρi(G)]. Previously, it was proved that the theory of divisible m-rigid groups is complete and ω-stable. In the present paper, we give an algebraic description of elements and types that are generic over a divisible m-rigid group G
Библиографическая ссылка:
Myasnikov A.G.
, Romanovskii N.S.
Generic Types and Generic Elements in Divisible Rigid Groups
Algebra and Logic. 2023. V.62. N1. P.72-79. DOI: 10.1007/s10469-023-09726-x WOS Scopus РИНЦ OpenAlex
Generic Types and Generic Elements in Divisible Rigid Groups
Algebra and Logic. 2023. V.62. N1. P.72-79. DOI: 10.1007/s10469-023-09726-x WOS Scopus РИНЦ OpenAlex
Оригинальная:
Мясников А.Г.
, Романовский Н.С.
Генерические типы и генерические элементы в делимых жёстких группах
Алгебра и логика. 2023. Т.62. №1. С.102-113. DOI: 10.33048/alglog.2023.62.107 РИНЦ
Генерические типы и генерические элементы в делимых жёстких группах
Алгебра и логика. 2023. Т.62. №1. С.102-113. DOI: 10.33048/alglog.2023.62.107 РИНЦ
Даты:
Поступила в редакцию: | 22 февр. 2022 г. |
Принята к публикации: | 30 окт. 2023 г. |
Опубликована online: | 3 янв. 2024 г. |
Опубликована в печати: | 13 мая 2024 г. |
Идентификаторы БД:
Web of science: | WOS:001139076400001 |
Scopus: | 2-s2.0-85181234629 |
РИНЦ: | 65935141 |
OpenAlex: | W4390545304 |
Цитирование в БД:
Пока нет цитирований