Generalized Schur Groups Full article
| Journal |
Algebra and Logic
ISSN: 0002-5232 , E-ISSN: 1573-8302 |
||||
|---|---|---|---|---|---|
| Output data | Year: 2023, Volume: 62, Number: 2, Pages: 166-178 Pages count : 13 DOI: 10.1007/s10469-024-09734-5 | ||||
| Tags | Schur rings, Schur groups, p-groups, Camina groups, dihedral groups | ||||
| Authors |
|
||||
| Affiliations |
|
Funding (1)
| 1 | Russian Science Foundation | 22-71-00021 |
Abstract:
An S-ring (Schur ring) is said to be central if it is contained in the center of a group ring. We introduce the notion of a generalized Schur group, i.e., a finite group such that all central S-rings over this group are Schurian. It generalizes the notion of a Schur group in a natural way, and for Abelian groups, the two notions are equivalent. We prove basic properties and present infinite families of non-Abelian generalized Schur groups.
Cite:
Ryabov G.K.
Generalized Schur Groups
Algebra and Logic. 2023. V.62. N2. P.166-178. DOI: 10.1007/s10469-024-09734-5 WOS Scopus РИНЦ OpenAlex
Generalized Schur Groups
Algebra and Logic. 2023. V.62. N2. P.166-178. DOI: 10.1007/s10469-024-09734-5 WOS Scopus РИНЦ OpenAlex
Original:
Рябов Г.К.
Об обощенных группах Шура
Алгебра и логика. 2023. Т.62. №2. С.247-265. DOI: 10.33048/alglog.2023.62.205 РИНЦ
Об обощенных группах Шура
Алгебра и логика. 2023. Т.62. №2. С.247-265. DOI: 10.33048/alglog.2023.62.205 РИНЦ
Dates:
| Submitted: | Sep 13, 2022 |
| Accepted: | Jan 31, 2024 |
| Published print: | Feb 14, 2024 |
| Published online: | Feb 14, 2024 |
Identifiers:
| Web of science: | WOS:001161342900001 |
| Scopus: | 2-s2.0-85185106190 |
| Elibrary: | 65512228 |
| OpenAlex: | W4391812666 |
Citing:
Пока нет цитирований