Sciact
  • EN
  • RU

Optimal quadrature formulas for curvilinear integrals of the first kind Full article

Journal Siberian Advances in Mathematics
ISSN: 1055-1344 , E-ISSN: 1934-8126
Output data Year: 2024, Volume: 34, Number: 1, Pages: 80-90 Pages count : 11 DOI: 10.1134/S1055134424010048
Tags quadrature formula, error functional, Sobolev space on a closed curve, embedding constant and function, optimal formula
Authors Vaskevich V.L. 1,2 , Turgunov I. 2
Affiliations
1 Sobolev Institute of Mathematics
2 Novosibirsk State University

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0008

Abstract: We consider the problem on optimal quadrature formulas for curvilinear integrals of the first kind that are exact for constant functions. This problem is reduced to the minimization problem for a quadratic form in many variables whose matrix is symmetric and positive definite. We prove that the objective quadratic function attains its minimum at asingle point ofthe corresponding multi-dimensional space. Hence, for a prescribed set of nodes, there exists a unique optimal quadrature formula over a closed smooth contour, i.e., a formula with the least possible norm of the error functional in the conjugate space. We show that the tuple of weights of the optimal quadrature formula is a solution of a special nondegenerate system of linear algebraic equations.
Cite: Vaskevich V.L. , Turgunov I.
Optimal quadrature formulas for curvilinear integrals of the first kind
Siberian Advances in Mathematics. 2024. V.34. N1. P.80-90. DOI: 10.1134/S1055134424010048 Scopus РИНЦ OpenAlex
Original: Васкевич В.Л. , Тургунов И.М.
Оптимальные квадратурные формулы для криволинейных интегралов первого рода
Математические труды. 2023. Т.26. №2. С.44-61. DOI: 10.33048/mattrudy.2023.26.203 РИНЦ
Dates:
Submitted: Oct 10, 2023
Accepted: Nov 20, 2023
Published print: Mar 11, 2024
Published online: Mar 11, 2024
Identifiers:
Scopus: 2-s2.0-85187443320
Elibrary: 66332973
OpenAlex: W4392649832
Citing:
DB Citing
OpenAlex 1
Altmetrics: