Sciact
  • EN
  • RU

On the power rate of convergence in Wiener's ergodic theorem Full article

Journal St. Petersburg Mathematical Journal
ISSN: 1061-0022 , E-ISSN: 1547-7371
Output data Year: 2024, Volume: 35, Number: 6, Article number : 1841, Pages count : 7 DOI: 10.1090/spmj/1841
Tags Bessel functions, Rates of convergence in ergodic theorems, Wiener’s ergodic theorem
Authors Podvigin I.V. 1
Affiliations
1 Sobolev Institute of Mathematics of SB RAS

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0004

Abstract: For ergodic averages over d -dimensional balls, an integral representation is obtained for L_2 -norms with a kernel containing the Bessel functions of the first kind. Based on this formula, a spectral criterion for the power rate of convergence in Wiener’s ergodic theorem is proved for all possible exponents. The resulting criterion completely covers the known 1-dimensional result.
Cite: Podvigin I.V.
On the power rate of convergence in Wiener's ergodic theorem
St. Petersburg Mathematical Journal. 2024. V.35. N6. 1841 :1-7. DOI: 10.1090/spmj/1841 WOS Scopus РИНЦ OpenAlex
Original: Подвигин И.В.
О степенной скорости сходимости в эргодической теореме Винера
Алгебра и анализ. 2023. Т.35. №6. С.159–168. РИНЦ
Dates:
Submitted: Jun 28, 2023
Published online: Jan 9, 2025
Published print: Jan 10, 2025
Identifiers:
Web of science: WOS:001401294300001
Scopus: 2-s2.0-85217139508
Elibrary: 81076870
OpenAlex: W4406270601
Citing: Пока нет цитирований
Altmetrics: