Sciact
  • EN
  • RU

A stability estimate in the source problem for the radiative transfer equation Full article

Journal Doklady Mathematics
ISSN: 1064-5624 , E-ISSN: 1531-8362
Output data Year: 2023, Volume: 108, Number: 3, Pages: 450–453 Pages count : 5 DOI: 10.1134/S106456242370134X
Tags radiative transfer equation, source problem, stability estimate
Authors Romanov V.G. 1
Affiliations
1 Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences

Funding (1)

1 Министерство науки и высшего образования РФ
Mathematical Center in Akademgorodok
075-15-2019-1613, 075-15-2022-281

Abstract: A stability estimate for the solution of a source problem for the stationary radiative transfer equation is given. It is supposed that the source has an isotropic distribution. Earlier, stability estimates for this problem were found in a partial case of the emission tomography problem with a vanishing scattering operator and for the complete transfer equation under additional difficult-to-check conditions imposed on the absorption coefficient and the scattering kernel. In this work, we suggest a new fairly simple approach for obtaining a stability estimate for the problem under the consideration. The transfer equation is considered in a circle of the two-dimension space. In the forward problem, it is assumed that incoming radiation is absent. In the inverse problem of recovering the unknown source, data on solutions of the forward problem related to outgoing radiation are given on a portion of the boundary. The obtained result can be used to estimate the total density of distributed radiation sources.
Cite: Romanov V.G.
A stability estimate in the source problem for the radiative transfer equation
Doklady Mathematics. 2023. V.108. N3. P.450–453. DOI: 10.1134/S106456242370134X WOS Scopus РИНЦ OpenAlex
Original: Романов В.Г.
Оценка устойчивости в задаче об источнике для уравнения переноса излучения
Доклады Академии наук. Серия: Математика, информатика, процессы управления. 2023. Т.514. №1. С.34-38. DOI: 10.31857/S2686954323600271 РИНЦ OpenAlex
Dates:
Submitted: May 10, 2023
Accepted: Oct 18, 2023
Published print: Dec 27, 2023
Published online: Mar 7, 2024
Identifiers:
Web of science: WOS:001184111000010
Scopus: 2-s2.0-85187909492
Elibrary: 65119010
OpenAlex: W4392824545
Citing: Пока нет цитирований
Altmetrics: