Sciact
  • EN
  • RU

A stability estimate in the source problem for the radiative transfer equation Научная публикация

Журнал Doklady Mathematics
ISSN: 1064-5624 , E-ISSN: 1531-8362
Вых. Данные Год: 2023, Том: 108, Номер: 3, Страницы: 450–453 Страниц : 5 DOI: 10.1134/S106456242370134X
Ключевые слова radiative transfer equation, source problem, stability estimate
Авторы Romanov V.G. 1
Организации
1 Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences

Информация о финансировании (1)

1 Министерство науки и высшего образования РФ
Математический центр в Академгородке
075-15-2019-1613, 075-15-2022-281

Реферат: A stability estimate for the solution of a source problem for the stationary radiative transfer equation is given. It is supposed that the source has an isotropic distribution. Earlier, stability estimates for this problem were found in a partial case of the emission tomography problem with a vanishing scattering operator and for the complete transfer equation under additional difficult-to-check conditions imposed on the absorption coefficient and the scattering kernel. In this work, we suggest a new fairly simple approach for obtaining a stability estimate for the problem under the consideration. The transfer equation is considered in a circle of the two-dimension space. In the forward problem, it is assumed that incoming radiation is absent. In the inverse problem of recovering the unknown source, data on solutions of the forward problem related to outgoing radiation are given on a portion of the boundary. The obtained result can be used to estimate the total density of distributed radiation sources.
Библиографическая ссылка: Romanov V.G.
A stability estimate in the source problem for the radiative transfer equation
Doklady Mathematics. 2023. V.108. N3. P.450–453. DOI: 10.1134/S106456242370134X WOS Scopus РИНЦ OpenAlex
Оригинальная: Романов В.Г.
Оценка устойчивости в задаче об источнике для уравнения переноса излучения
Доклады Академии наук. Серия: Математика, информатика, процессы управления. 2023. Т.514. №1. С.34-38. DOI: 10.31857/S2686954323600271 РИНЦ OpenAlex
Даты:
Поступила в редакцию: 10 мая 2023 г.
Принята к публикации: 18 окт. 2023 г.
Опубликована в печати: 27 дек. 2023 г.
Опубликована online: 7 мар. 2024 г.
Идентификаторы БД:
Web of science: WOS:001184111000010
Scopus: 2-s2.0-85187909492
РИНЦ: 65119010
OpenAlex: W4392824545
Цитирование в БД: Пока нет цитирований
Альметрики: