Sciact
  • EN
  • RU

Decompositions in Semirings Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2023, Volume: 64, Number: 4, Pages: 836-846 Pages count : 11 DOI: 10.1134/s0037446623040055
Tags canonical decomposition, factorial language, ordered semigroup, semiring
Authors Batueva Ts.Ch.-D. 1 , Schwidefsky M.V. 1
Affiliations
1 Novosibirsk State University, Novosibirsk, Russia

Funding (1)

1 Russian Science Foundation 22-21-00104

Abstract: We prove that each element of a complete atomic $ l $ -semiring has a canonical decomposition.We also find some sufficient conditions for the decomposition to be uniquethat are expressed by first-order sentences.As a corollary, we obtain a theorem of Avgustinovich–Frid which claims thateach factorial language has the unique canonical decomposition.
Cite: Batueva T.C.-D. , Schwidefsky M.V.
Decompositions in Semirings
Siberian Mathematical Journal. 2023. V.64. N4. P.836-846. DOI: 10.1134/s0037446623040055 WOS Scopus РИНЦ OpenAlex
Original: Батуева Ц.Ч.Д. , Швидефски М.В.
Разложения в полукольцах
Сибирский математический журнал. 2023. Т.64. №4. С.720-732. DOI: 10.33048/smzh.2023.64.405 РИНЦ
Dates:
Submitted: Jan 25, 2023
Accepted: May 16, 2023
Published print: Jul 24, 2023
Published online: Jul 24, 2023
Identifiers:
Web of science: WOS:001035552800005
Scopus: 2-s2.0-85165566212
Elibrary: 62052732
OpenAlex: W4385196609
Citing: Пока нет цитирований
Altmetrics: