Decompositions in Semirings Full article
| Journal |
Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260 |
||
|---|---|---|---|
| Output data | Year: 2023, Volume: 64, Number: 4, Pages: 836-846 Pages count : 11 DOI: 10.1134/s0037446623040055 | ||
| Tags | canonical decomposition, factorial language, ordered semigroup, semiring | ||
| Authors |
|
||
| Affiliations |
|
Funding (1)
| 1 | Russian Science Foundation | 22-21-00104 |
Abstract:
We prove that each element of a complete atomic $ l $ -semiring has a canonical decomposition.We also find some sufficient conditions for the decomposition to be uniquethat are expressed by first-order sentences.As a corollary, we obtain a theorem of Avgustinovich–Frid which claims thateach factorial language has the unique canonical decomposition.
Cite:
Batueva T.C.-D.
, Schwidefsky M.V.
Decompositions in Semirings
Siberian Mathematical Journal. 2023. V.64. N4. P.836-846. DOI: 10.1134/s0037446623040055 WOS Scopus РИНЦ OpenAlex
Decompositions in Semirings
Siberian Mathematical Journal. 2023. V.64. N4. P.836-846. DOI: 10.1134/s0037446623040055 WOS Scopus РИНЦ OpenAlex
Original:
Батуева Ц.Ч.Д.
, Швидефски М.В.
Разложения в полукольцах
Сибирский математический журнал. 2023. Т.64. №4. С.720-732. DOI: 10.33048/smzh.2023.64.405 РИНЦ
Разложения в полукольцах
Сибирский математический журнал. 2023. Т.64. №4. С.720-732. DOI: 10.33048/smzh.2023.64.405 РИНЦ
Dates:
| Submitted: | Jan 25, 2023 |
| Accepted: | May 16, 2023 |
| Published print: | Jul 24, 2023 |
| Published online: | Jul 24, 2023 |
Identifiers:
| Web of science: | WOS:001035552800005 |
| Scopus: | 2-s2.0-85165566212 |
| Elibrary: | 62052732 |
| OpenAlex: | W4385196609 |
Citing:
Пока нет цитирований