On Local Stability in the Complete Prony Problem Full article
Journal |
Siberian Advances in Mathematics
ISSN: 1055-1344 , E-ISSN: 1934-8126 |
||||
---|---|---|---|---|---|
Output data | Year: 2024, Volume: 34, Number: 2, Pages: 116-145 Pages count : 30 DOI: 10.1134/S1055134424020044 | ||||
Tags | Difference equations, parameter identification, variational Prony problem, local stability. | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | FWNF-2022-0008 |
Abstract:
We consider the variational Prony problem on approximating observations by the sum of exponentials. We find critical points and the second derivatives of the implicit function that relates perturbation in with the corresponding exponents. We suggest upper bounds for the second order increments and describe the domain, where the accuracy of a linear approximation of is acceptable. We deduce lower estimates of the norm of deviation of for small perturbations in . We compare our estimates of this norm with upper bounds obtained with the use of Wilkinson’s inequality.
Cite:
Lomov A.A.
On Local Stability in the Complete Prony Problem
Siberian Advances in Mathematics. 2024. V.34. N2. P.116-145. DOI: 10.1134/S1055134424020044 Scopus РИНЦ OpenAlex
On Local Stability in the Complete Prony Problem
Siberian Advances in Mathematics. 2024. V.34. N2. P.116-145. DOI: 10.1134/S1055134424020044 Scopus РИНЦ OpenAlex
Original:
Ломов А.А.
О локальной устойчивости в полной задаче Прони
Математические труды. 2024. Т.27. №1. С.96-138. DOI: 10.25205/1560-750X-2024-27-1-96-138
О локальной устойчивости в полной задаче Прони
Математические труды. 2024. Т.27. №1. С.96-138. DOI: 10.25205/1560-750X-2024-27-1-96-138
Dates:
Submitted: | Oct 9, 2023 |
Accepted: | Apr 17, 2024 |
Published print: | Jun 1, 2024 |
Published online: | Jun 1, 2024 |
Identifiers:
Scopus: | 2-s2.0-85195181359 |
Elibrary: | 67839125 |
OpenAlex: | W4399209600 |
Citing:
Пока нет цитирований