Sciact
  • EN
  • RU

On Local Stability in the Complete Prony Problem Full article

Journal Siberian Advances in Mathematics
ISSN: 1055-1344 , E-ISSN: 1934-8126
Output data Year: 2024, Volume: 34, Number: 2, Pages: 116-145 Pages count : 30 DOI: 10.1134/S1055134424020044
Tags Difference equations, parameter identification, variational Prony problem, local stability.
Authors Lomov A.A. 1,2
Affiliations
1 Sobolev Institute of Mathematics, SB RAS
2 Novosibirsk State University

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0008

Abstract: We consider the variational Prony problem on approximating observations by the sum of exponentials. We find critical points and the second derivatives of the implicit function that relates perturbation in with the corresponding exponents. We suggest upper bounds for the second order increments and describe the domain, where the accuracy of a linear approximation of is acceptable. We deduce lower estimates of the norm of deviation of for small perturbations in x. We compare our estimates of this norm with upper bounds obtained with the use of Wilkinson’s inequality.
Cite: Lomov A.A.
On Local Stability in the Complete Prony Problem
Siberian Advances in Mathematics. 2024. V.34. N2. P.116-145. DOI: 10.1134/S1055134424020044 Scopus РИНЦ OpenAlex
Original: Ломов А.А.
О локальной устойчивости в полной задаче Прони
Математические труды. 2024. Т.27. №1. С.96-138. DOI: 10.25205/1560-750X-2024-27-1-96-138
Dates:
Submitted: Oct 9, 2023
Accepted: Apr 17, 2024
Published print: Jun 1, 2024
Published online: Jun 1, 2024
Identifiers:
Scopus: 2-s2.0-85195181359
Elibrary: 67839125
OpenAlex: W4399209600
Citing: Пока нет цитирований
Altmetrics: