Sciact
  • EN
  • RU

A Multidimensional Analog of the Conway Circle Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2024, Volume: 65, Number: 4, Pages: 810-817 Pages count : 8 DOI: 10.1134/s0037446624040086
Tags Conway circle, Conway sphere, frame tetrahedron, Euclidean space, triangle, tetrahedron, simplex
Authors Malyugin S.A. 1
Affiliations
1 Sobolev Institute of Mathematics

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0017

Abstract: Conway established the following geometric fact: If the sides AB and AC of a triangle ABC are prolonged beyond the point A by the length of the opposite side BC and the same is done with the vertices B and C, then the so-constructed 6 points lie on the sole circle whose center coincides with the center of the inscribed circle. V.A. Alexandrov found a spatial analog of the Conway circle. Namely, if in a tetrahedron ABCD we mark three points on the prolongations of the edges AB, AC,andAD beyond the vertex A at distance from A to the half-perimeter of the opposite face BCD andthendo the same with the remaining vertices B, C,andD then the so-constructed 12 points lie on the same sphere if and only if ABCD is a frame tetrahedron. We address the multidimensional version of the fact for a simplex in the Euclidean space En.
Cite: Malyugin S.A.
A Multidimensional Analog of the Conway Circle
Siberian Mathematical Journal. 2024. V.65. N4. P.810-817. DOI: 10.1134/s0037446624040086 WOS Scopus РИНЦ OpenAlex
Original: Малюгин С.А.
Многомерный аналог окружности Конвея
Сибирский математический журнал. 2024. Т.65. №4. С.693-701. DOI: 10.33048/smzh.2024.65.408 РИНЦ
Dates:
Submitted: Jan 16, 2024
Accepted: Jun 20, 2024
Published print: Jul 16, 2024
Published online: Jul 16, 2024
Identifiers:
Web of science: WOS:001272553600020
Scopus: 2-s2.0-85198634799
Elibrary: 68538181
OpenAlex: W4400697949
Citing: Пока нет цитирований
Altmetrics: