Sciact
  • EN
  • RU

An inverse problem for the wave equation with two nonlinear terms Full article

Journal Differential Equations
ISSN: 0012-2661 , E-ISSN: 1608-3083
Output data Year: 2024, Volume: 60, Number: 4, Pages: 479–491 Pages count : 13 DOI: 10.1134/S0012266124040074
Tags inverse problem, nonlinear equation, integral geometry, uniqueness, stability
Authors Romanov V.G. 1
Affiliations
1 Sobolev Institute of Mathematics

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0009

Abstract: An inverse problem for a second-order hyperbolic equation containing two nonlinear terms is studied. The problem is to reconstruct the coefficients of the nonlinearities. The Cauchy problem with a point source located at a point y is considered. This point is a parameter of the problem and successively runs over a spherical surface S. It is assumed that the desired coefficients are nonzero only in a domain lying inside S. The trace of the solution of the Cauchy problem on S is specified for all possible values of y and for times close to the arrival of the wave from the source to the points on the surface S; this allows reducing the inverse problem under consideration to two successively solved problems of integral geometry. Solution stability estimates are found for these two problems.
Cite: Romanov V.G.
An inverse problem for the wave equation with two nonlinear terms
Differential Equations. 2024. V.60. N4. P.479–491. DOI: 10.1134/S0012266124040074 WOS Scopus РИНЦ OpenAlex
Original: Романов В.Г.
Обратная задача для волнового уравнения с двумя нелинейными членами
Дифференциальные уравнения. 2024. V.60. N4. P.508-520. DOI: 10.31857/s0374064124040061 РИНЦ OpenAlex
Dates:
Submitted: Feb 1, 2024
Accepted: Feb 13, 2024
Published print: Jul 23, 2024
Published online: Jul 23, 2024
Identifiers:
Web of science: WOS:001280829900010
Scopus: 2-s2.0-85200044483
Elibrary: 68537844
OpenAlex: W4401106013
Citing:
DB Citing
OpenAlex 2
Scopus 2
Web of science 1
Elibrary 2
Altmetrics: