Key polynomials and preminimal pairs Full article
Journal |
St. Petersburg Mathematical Journal
ISSN: 1061-0022 , E-ISSN: 1547-7371 |
||
---|---|---|---|
Output data | Year: 2024, Volume: 35, Number: 3, Pages: 461-465 Pages count : 5 DOI: 10.1090/spmj/1812 | ||
Tags | Henselian fields, Key polynomial, preminimal pair, valued fields | ||
Authors |
|
||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | FWNF-2022-0012 |
Abstract:
The paper pertains to the theory of valued fields and is devoted to describing extensions of valuations to the field of rational functions in one variable. An efficient tool here is the notion of a key polynomial introduced by S. Maclane in 1936. With the use of the notion of a preminimal pair introduced recently, a new description of key polynomials over Henselian fields is found.
Cite:
Ershov Y.
Key polynomials and preminimal pairs
St. Petersburg Mathematical Journal. 2024. V.35. N3. P.461-465. DOI: 10.1090/spmj/1812 WOS Scopus РИНЦ OpenAlex
Key polynomials and preminimal pairs
St. Petersburg Mathematical Journal. 2024. V.35. N3. P.461-465. DOI: 10.1090/spmj/1812 WOS Scopus РИНЦ OpenAlex
Original:
Ершов Ю.Л.
Ключевые многочлены и предминимальные пары
Алгебра и анализ. 2023. Т.35. №3. С.38-43. РИНЦ
Ключевые многочлены и предминимальные пары
Алгебра и анализ. 2023. Т.35. №3. С.38-43. РИНЦ
Dates:
Submitted: | Aug 15, 2022 |
Published online: | Jul 30, 2024 |
Published print: | Oct 18, 2024 |
Identifiers:
Web of science: | WOS:001280520900001 |
Scopus: | 2-s2.0-85207142350 |
Elibrary: | 69086351 |
OpenAlex: | W4401123914 |
Citing:
Пока нет цитирований