Sciact
  • EN
  • RU

An inverse problem for a nonlinear transport equation Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2024, Volume: 65, Number: 5, Pages: 1195-1200 Pages count : 6 DOI: 10.1134/S0037446624050185
Tags nonlinear transport equation, inverse problem, tomography, uniqueness
Authors Romanov V.G. 1
Affiliations
1 Sobolev Institute of Mathematics

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0009

Abstract: Under consideration is a nonlinear transport equation containing two nonlinearities and a coefficient q(x) of a lower-order nonlinear term depending on two or three space variables. We study the direct problem with the data on a part of the lateral surface of a cylindrical domain, explicitly construct a solution, and prove the uniqueness of the solution. Also, we state the problem of recovering the coefficient q(x) on some information about a solution to the direct problem and demonstrate that the inverse problem reduces to an X-ray tomography problem. This opens a way to its efficient numerical solution.
Cite: Romanov V.G.
An inverse problem for a nonlinear transport equation
Siberian Mathematical Journal. 2024. V.65. N5. P.1195-1200. DOI: 10.1134/S0037446624050185 WOS Scopus РИНЦ OpenAlex
Original: Романов В.Г.
Обратная задача для нелинейного уравнения переноса
Сибирский математический журнал. 2024. Т.65. №5. С.1022-1028. DOI: 10.33048/smzh.2024.65.518 РИНЦ
Dates:
Submitted: Jul 29, 2024
Accepted: Aug 20, 2024
Published print: Sep 20, 2024
Published online: Sep 20, 2024
Identifiers:
Web of science: WOS:001320442300010
Scopus: 2-s2.0-85204772354
Elibrary: 69920894
OpenAlex: W4402842354
Citing:
DB Citing
Scopus 1
Elibrary 1
OpenAlex 1
Altmetrics: